Difference between revisions of "Main Page"

From Dirks Personal WiKi
m
m
Line 11: Line 11:
   
 
<math>y=\sqrt{1-x^{2}}</math>
 
<math>y=\sqrt{1-x^{2}}</math>
 
<math display="block">\begin{matrix}
 
\text{Using Polynomials as a Form-Fitting Tool.} \\
 
\\
 
\text{By Dirk Mittler, August 16, 2013} \\
 
\\
 
\text{As an example, a cubic (3rd-order) polynomial can be given as follows:} \\
 
\\
 
{f{{(x)}=\mathit{a1}}{x^{3} + \mathit{a2}}{x^{2} + \mathit{a3}}{x + \mathit{a4}}.} \\
 
\\
 
\text{This type of function can be made to give a list of 4 values, for a list of 4 known} \\
 
\text{parameters (x), through a careful choice of a1 ... a4 :} \\
 
\\
 
{\mathit{a1}{x_{1}^{3} + \mathit{a2}}{x_{1}^{2} + \mathit{a3}}{{x_{1} + \mathit{a4}}=f}{(x_{1})}.} \\
 
{\mathit{a1}{x_{2}^{3} + \mathit{a2}}{x_{2}^{2} + \mathit{a3}}{{x_{2} + \mathit{a4}}=f}{(x_{2})}.} \\
 
{\mathit{a1}{x_{3}^{3} + \mathit{a2}}{x_{3}^{2} + \mathit{a3}}{{x_{3} + \mathit{a4}}=f}{(x_{3})}.} \\
 
{\mathit{a1}{x_{4}^{3} + \mathit{a2}}{x_{4}^{2} + \mathit{a3}}{{x_{4} + \mathit{a4}}=f}{(x_{4})}.} \\
 
\\
 
\end{matrix}</math>
 

Revision as of 06:00, 29 August 2024

MediaWiki has been installed.

Consult the User's Guide for information on using the wiki software.

Getting started

[math]\displaystyle{ y=\sqrt{1-x^{2}} }[/math]