Difference between revisions of "Main Page"

From Dirks Personal WiKi
m
m
Line 13: Line 13:
   
 
<math display="block">\begin{matrix}
 
<math display="block">\begin{matrix}
\text{Using\ Polynomials\ as\ a\ Form-Fitting\ Tool.} \\
+
\text{Using Polynomials as a Form-Fitting Tool.} \\
 
\\
 
\\
\text{By\ Dirk\ Mittler,\ August\ 16,\ 2013} \\
+
\text{By Dirk Mittler, August 16, 2013} \\
 
\\
 
\\
\text{As\ an\ example,\ a\ cubic\ (3rd-order)\ polynomial\ can\ be\ given\ as\ follows:} \\
+
\text{As an example, a cubic (3rd-order) polynomial can be given as follows:} \\
 
\\
 
\\
 
{f{{(x)}=\mathit{a1}}{x^{3} + \mathit{a2}}{x^{2} + \mathit{a3}}{x + \mathit{a4}}.} \\
 
{f{{(x)}=\mathit{a1}}{x^{3} + \mathit{a2}}{x^{2} + \mathit{a3}}{x + \mathit{a4}}.} \\
 
\\
 
\\
\text{This\ type\ of\ function\ can\ be\ made\ to\ give\ a\ list\ of\ 4\ values,\ for\ a\ list\ of\ 4\ known} \\
+
\text{This type of function can be made to give a list of 4 values, for a list of 4 known} \\
\text{parameters\ (x),\ through\ a\ careful\ choice\ of\ a1\ \ ...\ a4\ :} \\
+
\text{parameters (x), through a careful choice of a1 ... a4 :} \\
 
\\
 
\\
 
{\mathit{a1}{x_{1}^{3} + \mathit{a2}}{x_{1}^{2} + \mathit{a3}}{{x_{1} + \mathit{a4}}=f}{(x_{1})}.} \\
 
{\mathit{a1}{x_{1}^{3} + \mathit{a2}}{x_{1}^{2} + \mathit{a3}}{{x_{1} + \mathit{a4}}=f}{(x_{1})}.} \\

Revision as of 05:59, 29 August 2024

MediaWiki has been installed.

Consult the User's Guide for information on using the wiki software.

Getting started

[math]\displaystyle{ y=\sqrt{1-x^{2}} }[/math]

[math]\displaystyle{ \begin{matrix} \text{Using Polynomials as a Form-Fitting Tool.} \\ \\ \text{By Dirk Mittler, August 16, 2013} \\ \\ \text{As an example, a cubic (3rd-order) polynomial can be given as follows:} \\ \\ {f{{(x)}=\mathit{a1}}{x^{3} + \mathit{a2}}{x^{2} + \mathit{a3}}{x + \mathit{a4}}.} \\ \\ \text{This type of function can be made to give a list of 4 values, for a list of 4 known} \\ \text{parameters (x), through a careful choice of a1 ... a4 :} \\ \\ {\mathit{a1}{x_{1}^{3} + \mathit{a2}}{x_{1}^{2} + \mathit{a3}}{{x_{1} + \mathit{a4}}=f}{(x_{1})}.} \\ {\mathit{a1}{x_{2}^{3} + \mathit{a2}}{x_{2}^{2} + \mathit{a3}}{{x_{2} + \mathit{a4}}=f}{(x_{2})}.} \\ {\mathit{a1}{x_{3}^{3} + \mathit{a2}}{x_{3}^{2} + \mathit{a3}}{{x_{3} + \mathit{a4}}=f}{(x_{3})}.} \\ {\mathit{a1}{x_{4}^{3} + \mathit{a2}}{x_{4}^{2} + \mathit{a3}}{{x_{4} + \mathit{a4}}=f}{(x_{4})}.} \\ \\ \end{matrix} }[/math]