Difference between revisions of "Main Page"

From Dirks Personal WiKi
m
m
Line 11: Line 11:
   
 
<math>y=\sqrt{1-x^{2}}</math>
 
<math>y=\sqrt{1-x^{2}}</math>
  +
  +
<math display="block">\begin{matrix}
  +
\text{Using\ Polynomials\ as\ a\ Form-Fitting\ Tool.} \\
  +
\\
  +
\text{By\ Dirk\ Mittler,\ August\ 16,\ 2013} \\
  +
\\
  +
\text{As\ an\ example,\ a\ cubic\ (3rd-order)\ polynomial\ can\ be\ given\ as\ follows:} \\
  +
\\
  +
{f{{(x)}=\mathit{a1}}{x^{3} + \mathit{a2}}{x^{2} + \mathit{a3}}{x + \mathit{a4}}.} \\
  +
\\
  +
\text{This\ type\ of\ function\ can\ be\ made\ to\ give\ a\ list\ of\ 4\ values,\ for\ a\ list\ of\ 4\ known} \\
  +
\text{parameters\ (x),\ through\ a\ careful\ choice\ of\ a1\ \ ...\ a4\ :} \\
  +
\\
  +
{\mathit{a1}{x_{1}^{3} + \mathit{a2}}{x_{1}^{2} + \mathit{a3}}{{x_{1} + \mathit{a4}}=f}{(x_{1})}.} \\
  +
{\mathit{a1}{x_{2}^{3} + \mathit{a2}}{x_{2}^{2} + \mathit{a3}}{{x_{2} + \mathit{a4}}=f}{(x_{2})}.} \\
  +
{\mathit{a1}{x_{3}^{3} + \mathit{a2}}{x_{3}^{2} + \mathit{a3}}{{x_{3} + \mathit{a4}}=f}{(x_{3})}.} \\
  +
{\mathit{a1}{x_{4}^{3} + \mathit{a2}}{x_{4}^{2} + \mathit{a3}}{{x_{4} + \mathit{a4}}=f}{(x_{4})}.} \\
  +
\\
  +
\end{matrix}</math>

Revision as of 05:56, 29 August 2024

MediaWiki has been installed.

Consult the User's Guide for information on using the wiki software.

Getting started

[math]\displaystyle{ y=\sqrt{1-x^{2}} }[/math]

[math]\displaystyle{ \begin{matrix} \text{Using\ Polynomials\ as\ a\ Form-Fitting\ Tool.} \\ \\ \text{By\ Dirk\ Mittler,\ August\ 16,\ 2013} \\ \\ \text{As\ an\ example,\ a\ cubic\ (3rd-order)\ polynomial\ can\ be\ given\ as\ follows:} \\ \\ {f{{(x)}=\mathit{a1}}{x^{3} + \mathit{a2}}{x^{2} + \mathit{a3}}{x + \mathit{a4}}.} \\ \\ \text{This\ type\ of\ function\ can\ be\ made\ to\ give\ a\ list\ of\ 4\ values,\ for\ a\ list\ of\ 4\ known} \\ \text{parameters\ (x),\ through\ a\ careful\ choice\ of\ a1\ \ ...\ a4\ :} \\ \\ {\mathit{a1}{x_{1}^{3} + \mathit{a2}}{x_{1}^{2} + \mathit{a3}}{{x_{1} + \mathit{a4}}=f}{(x_{1})}.} \\ {\mathit{a1}{x_{2}^{3} + \mathit{a2}}{x_{2}^{2} + \mathit{a3}}{{x_{2} + \mathit{a4}}=f}{(x_{2})}.} \\ {\mathit{a1}{x_{3}^{3} + \mathit{a2}}{x_{3}^{2} + \mathit{a3}}{{x_{3} + \mathit{a4}}=f}{(x_{3})}.} \\ {\mathit{a1}{x_{4}^{3} + \mathit{a2}}{x_{4}^{2} + \mathit{a3}}{{x_{4} + \mathit{a4}}=f}{(x_{4})}.} \\ \\ \end{matrix} }[/math]