Another way to state, that a stream of time-domain samples has been given a time-delay, is simply to state that each frequency-coefficient has been given a phase-shift, that depends both on the frequency of the coefficient, and on the intended time-delay.

A concern that some readers might have with this, is the fact that a number of samples need to be stored, in order for a time-delay to be executed in the time-domain. But as soon as differing values for coefficients, for a Fourier Transform, are spaced closer together, indicating in this case a longer time-delay, its computation also requires that a longer interval of samples in the time-domain need to be combined.

Now, if the reader would like to visualize what this would look like, as a homology to a graphical equalizer, then he would need to imagine a graphical equalizer the sliders of which can be made negative – i.e. one that can command, that one frequency come out inverted – so that then, if he was to set his sliders into the accurate shape of a sine-wave that goes both positive and negative in its settings, he should obtain a simple time-delay.

But there is one more reason for which this homology would be flawed. The type of Fourier Transform which is best-suited for this, would be the Discrete Fourier Transform, not one of the Discrete Cosine Transforms. The reason is the fact that the DFT accepts complex numbers as its terms. And so the reader would also have to imagine, that his equalizer not only have sliders that move up and down, but sliders with little wheels on them, from which he can give a phase-shift to one frequency, without changing its amplitude. Obviously graphical equalizers for music are not made that way.

Continue reading A single time-delay can also be expressed in the frequency-domain.