Revisiting the subject of approximating roots of polynomials.

In an earlier posting, I had written about an approach, for how to find approximations of the roots of polynomials, of an arbitrary degree, but in such away, also to find all the complex roots. (:1)

But with such strategies, there are issues. One concept was, that a home-grown search algorithm would get close to the actual root. Next, polishing would make the result more accurate. And then, an augmented division would be computed, which is also referred to as “Deflation”, resulting in a deflated polynomial, as many times as the original polynomial’s degree, minus one.

Pondering this issue today, I realized that there was still a conceptual weakness in that approach, that being, the fact that some small amount of error is tolerated in the first root found, so that each successive deflated polynomial contains progressively greater degrees of error. What effectively happens next is, that accurate roots are found, of increasingly inaccurate polynomials, and, that there appeared to be few ways to detect and correct the resulting errors, in roots found afterwards. Theoretically, this problem could progress to the point, where doubt is evoked, in whether or not roots found later, were even roots of the original polynomial, since by that time, the object which the roots are being found of, is no longer that original polynomial.

(Update 6/08/2020, 18h35… )

Continue reading Revisiting the subject of approximating roots of polynomials.

I just installed Sage (Math) under Debian / Stretch.

One of the mundane limitations which I’ve faced in past years, when installing Computer Algebra Systems etc., under Linux, that were supposed to be open-source, was that the only game in town – almost – was either ‘Maxima’ or ‘wxMaxima’, the latter of which is a fancy GUI, as well as a document exporter, for the former.

Well one fact which the rest of the computing world has known about for some time, but which I am newly finding for myself, is that software exists called ‘SageMath‘. Under Debian / Stretch, this is ‘straightforward’ to install, just by installing the meta-package from the standard repositories, named ‘sagemath’. If the reader also wants to install this, then I recommend also installing ‘sagemath-doc-en’ as well as ‘sagetex’ and ‘sagetex-doc’. Doing this will literally pull in hundreds of actual packages, so it should only be done on a strong machine, with a fast Internet connection! But once this has been done, the result will be enjoyable:


I have just clicked around a little bit, in the SageMath Notebook viewer, which is browser-based, and which I’m sure only provides a skeletal front-end to the actual software. But there is a feature which I already like: When the user wishes to Print his or her Worksheet, doing so from the browser just opens a secondary browser-window, from which we may ‘Save Page As…’ , and when we do, we discover that the HTML which gets saved, has its own, internal ‘MathJax‘ server. What this seems to suggest at first glance, is that the equations will display typeset correctly, without depending on an external CDN. Yay!

I look forward to getting more use out of this in the near future.

(Update 09/15/2018, 21h30 : )

Continue reading I just installed Sage (Math) under Debian / Stretch.