Using Polynomials as a Form-Fitting Tool.
By Dirk Mittler, August 16, 2013
As an example, a cubic (3rd-order) polynomial can be given as follows:

$$
f(x)=a 1 x^{3}+a 2 x^{2}+a 3 x+a 4 .
$$

This type of function can be made to give a list of 4 values, for a list of 4 known parameters (x), through a careful choice of a1

$$
\begin{aligned}
& a 1 x_{1}^{3}+a 2 x_{1}^{2}+a 3 x_{1}+a 4=f\left(x_{1}\right) . \\
& a 1 x_{2}^{3}+a 2 x_{2}^{2}+a 3 x_{2}+a 4=f\left(x_{2}\right) . \\
& \text { a1 } x_{3}^{3}+a 2 x_{3}^{2}+a 3 x_{3}+a 4=f\left(x_{3}\right) . \\
& a 1 x_{4}^{3}+a 2 x_{4}^{2}+a 3 x_{4}+a 4=f\left(x_{4}\right) .
\end{aligned}
$$

Let $A=\left(\begin{array}{l}a 1 \\ a 2 \\ a 3 \\ a 4\end{array}\right)$ and Let $Y=\left(\begin{array}{l}f\left(x_{1}\right) \\ f\left(x_{2}\right) \\ f\left(x_{3}\right) \\ f\left(x_{4}\right)\end{array}\right)$.
And Let $\mathrm{X}=\left(\left.\begin{array}{llll}x_{1}^{3} & x_{1}^{2} & x_{1} & 1 \\ x_{2}^{3} & x_{2}^{2} & x_{2} & 1 \\ x_{3}^{3} & x_{3}^{2} & x_{3} & 1 \\ x_{4}^{3} & x_{4}^{2} & x_{4} & 1\end{array} \right\rvert\,\right.$ [From known values of (x)].
Then, $X A=Y$.
But, we're assuming that Y and X are known, while A needs to be found. Thus, we need to find the inverse of X, such that

$$
X^{-1} Y=A
$$

Now, the polynomial which results, will fit 4 exact pairs of (x) and $f(x)$.
But one side-effect of doing this, is that the positions of the local maxima and minima are unpredictable. In fact, local maxima and minima usually occur where $f^{\prime}(x)=0$.
Therefore, we'd like to know the trick by which instead of 4 points, the polynomial can be made to fit 2 points and 2 derivatives, or 3 points and 1 derivative, or 1 point and 3 derivatives, etc...

$$
f^{\prime}(x)=3 a 1 x^{2}+2 a 2 x+1 a 3+0 a 4
$$

Thus, we can Let $\mathrm{Y}=\left(\begin{array}{c}f\left(x_{1}\right) \\ f\left(x_{2}\right) \\ f^{\prime}\left(x_{1}\right) \\ f^{\prime}\left(x_{2}\right)\end{array}\right)$.
And Let $\mathrm{X}=\left(\begin{array}{cccc}x_{1}^{3} & x_{1}^{2} & x_{1} & 1 \\ x_{2}^{3} & x_{2}^{2} & x_{2} & 1 \\ 3 x_{1}^{2} & 2 x_{1} & 1 & 0 \\ 3 x_{2}^{2} & 2 x_{2} & 1 & 0\end{array}\right)$.
Thus, if we simply wanted to solve the 1-dimensional cubic interpolation between $\mathrm{x}=0$ and $\mathrm{x}=1$, then we could use:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right) A=\left(\begin{array}{r}
f(0) \\
f(1) \\
f^{\prime}(0) \\
f^{\prime}(1)
\end{array}\right) .
$$

Yet, it becomes easy to see that larger form-fitting exercises are possible, with polynomials up to the (n)th-degree.

- Dirk Mittler

