VDPAU Playback Issue (Problem Solved).

One of the facts which apply to Linux computing is, that NVIDIA created an API, which allows for certain video-streams to be played back in a way accelerated by the GPU, instead of all the video decoding taking place on the CPU. And, users don’t necessarily need to have an NVIDIA graphics card, in order for certain graphics drivers to offer this feature, which is called ‘VDPAU’, an acronym that stands for “Video Decode and Playback API for Unix”. Simultaneously, what some Linux users can do, is to experiment with shell-scripts that allow us to click on a specific Application Window, in order to perform screen-capture on that Window for a specified number of seconds, ad then to compress the resulting stream into MP4, AVI, or MPG -Files, once the screen-capture has finished. This latter piece of magic can be performed using elaborate ‘ffmpeg’ commands, which would need to be a part of the script in question. And in recent days, I’ve been tweaking such scripts.

But then an odd behaviour crept up. My NVIDIA graphics card supports the real-time playback of MPEG-1, MPEG-2, DIVX and H.264 -encoded streams, with GPU-acceleration. Yet, when I clicked on the resulting animations, depending on which player I chose to play those with, I’d either obtain the video stream, or I’d just obtain a grey rectangle, replacing the captured video stream. And what I do know, is that which of these results I obtain, depends on whether I’m playing back the video stream using a software decoder purely, or whether I’m choosing to have the stream played back with GPU-acceleration.

I’ve run in to the same problem before, but this time, the cause was elsewhere.

Basically, this result will often mean that the player application first asks the graphics card, whether the latter can decode the stream in question, and when the VDPAU API responds ‘Yes’, hands over the relevant processing to the GPU, but for some unknown reason, the GPU fails to decode the stream. This result can sometimes have a different meaning, but I knew I needed to focus my attention on this interpretation.

Linux users will often need to have some sort of file-format, in which they can store arbitrary video-clips, that do not need to conform to strict broadcasting and distribution standards, even when the goal is ‘just to monkey around with video clips’.

I finally found what the culprit was…

(Updated 8/15/2019, 22h15 … )

Continue reading VDPAU Playback Issue (Problem Solved).

A caveat in using ‘ffmpeg’ to produce consumer-ready streams, from individual frame-files.

It recently happened to me, that I had used ‘Blender’ to create a very short animation, with 144 frames, but where I had instructed Blender to output this animation as a series of numbered .PNG-Files, which I would next use an ‘ffmpeg’ command, to compile into a compressed stream, the latter being an .MP4-File, using H.264 video compression. ( :1 )

But unexpectedly, I had obtained an .MP4-File, which would play on some of my player applications, but not on others. And when I investigated this problem, I found that player-applications which used a feature under Linux named ‘VDPAU‘, were Not able to play the stream, while player-applications which used software to decompress the stream, were able to play it.

The very first assumption that some people could make in such a situation would be, that they do not have their graphics drivers set up correctly, and that VDPAU may not be working correctly on their Linux-based computers. But, when I looked at my NVidia settings panel, it indicated that VDPAU support included support for H.264 -encoded streams specifically:


BTW, It’s not necessary for the computer to have an NVidia graphics-card, with the associated NVidia GUI, to possess graphics-acceleration. It’s just that NVidia makes it particularly easy, for users who are used to Windows, to obtain information about their graphics card.

Rather than to believe next, that VDPAU is broken due to the graphics driver, I began to look for my problem elsewhere. And I was able to find the true cause for the playback-problem. Ultimately, if we want to compress a stream into an .MP4-File, and if we want the recipient of that stream to be able to play it back, using hardware-acceleration, which is the norm for high-definition streams, then an ‘ffmpeg’ command similar to the one below would be the correct command:


ffmpeg -framerate 24 -i infile_%4d.png -an -vcodec libx264 -pix_fmt yuv420p -crf 20 outfile.mp4


But I feel that I should explain, how my first attempt to compress this stream, failed. It did not contain the parameter shown above, namely ‘-pix_fmt yuv420p‘. There are two WiKiPedia articles, which explain the subject of what ‘YUV’ means, and that may explain the subject better than I can, and that I recommend my reader read:



I am now going to paraphrase, what the above articles explain in detail.

Continue reading A caveat in using ‘ffmpeg’ to produce consumer-ready streams, from individual frame-files.

I’m impressed with the Mesa drivers.

Before we install Linux on our computers, we usually try to make sure that we either have an NVIDIA or an AMD / Radeon  GPU  – the graphics chip-set – so that we can use either the proprietary NVIDIA drivers designed by their company to run under Linux, or so that we can use the proprietary ‘fglrx’ drivers provided by AMD, or so that we can use the ‘Mesa‘ drivers, which are open-source, and which are designed by Linux specialists. Because the proprietary drivers only cover one out of the available families of chip-sets, this means that after we have installed Linux, our choice boils down to a choice between either proprietary or Mesa drivers.

I think that the main advantage of the proprietary drivers remains, that they will offer our computers the highest version of OpenGL possible from the hardware – which could go up to 4.5 ! But obviously, there are also advantages to using Mesa , one of which is the fact that to install those doesn’t install a ‘blob’ – an opaque piece of binary code which nobody can analyze. Another is the fact that the Mesa drivers will provide ‘VDPAU‘, which the ‘fglrx’ drivers fail to implement. This last detail has to do with the hardware-accelerated playback of 2D video-streams, that have been compressed with one out of a very short list of Codecs.

But I would add to the possible reasons for choosing Mesa, the fact that its stated OpenGL version-number does not set a real limit, on what the graphics-chip-set can do. Officially, Mesa offers OpenGL 3.0 , and this could make it look at the surface, as though its implementation of OpenGL is somewhat lacking, as a trade-off against its other benefits.

One way in which ‘OpenGL’ seems to differ from its competitor in real-life: ‘DirectX’, is in the system by which certain DirectX drivers and hardware offer a numeric compute-level, and where if that compute-level has been achieved, the game-designer can count on a specific set of features being implemented. What seems to happen with OpenGL instead, is that 3.0 must first be satisfied. And if it is, the 3D application next checks individually, whether the OpenGL system available, offers specific OpenGL extensions by name. If the application is very-well-written, it will test for the existence of every extension it needs, before giving the command to load that extension. But in certain cases, a failure to test this can lead to the graphics card crashing, because the graphics card itself may not have the extension requested.

As an example of what I mean, my KDE / Plasma compositor settings, allow me to choose ‘OpenGL 3.1′ as an available back-end, and when I select it, it works, in spite of my Mesa drivers ‘only’ achieving 3.0 . I think that if the drivers had been stated to be 3.1 , then this could actually mean they lose backward-compatibility with 3.0 , while in fact they preserve that backward-compatibility as much as possible.



Continue reading I’m impressed with the Mesa drivers.

Understanding that The GPU Is Real

A type of graphics hardware which once existed, was an arrangement by which a region of memory was formatted to correspond directly to screen-pixels, and by which a primitive set of chips would rasterize that memory-region, sending the analog-equivalent of pixel-values to an output-device, such as a monitor, even while the CPU was writing changes to the same memory-region. This type of graphics arrangement is currently referred to as “A Framebuffer Device”. Since the late 1990s, these types of graphics have been replaced by graphics, that possess a ‘GPU’ – a Graphics Processing Unit. The acronym GPU follows similarly to how the acronym ‘CPU’ is formed, the latter of which stands for Central Processing Unit.

A GPU is essentially a kind of co-processor, which does a lot of the graphics-work that the CPU once needed to do, back in the days of framebuffer-devices. The GPU has been optimized, where present, to give real-time 2D, perspective-renderings of 3D scenes, that are fed to the GPU in a language that is either some version of DirectX, or in some version of OpenGL. But, modern GPUs are also capable of performing certain 2D tasks, such as to accelerate the playback of compressed video-streams at very high resolutions, and to do Desktop Compositing.



What they do is called raster-based rendering, as opposed to ray-tracing, where ray-tracing cannot usually be accomplished in real-time.

And modern smart-phones and tablets, also typically have GPUs, that give them some of their smooth home-screen effects and animations, which would all be prohibitive to program under software-based graphics.

The fact that some phone or computer has been designed and built by Apple, does not mean that it has no GPU. Apple presently uses OpenGL as its main language to communicate 3D to its GPUs.

DirectX is totally owned by Microsoft.

The GPU of a general-purpose computing device often possesses additional protocols for accepting data from the CPU, other than DirectX or OpenGL. The accelerated, 2D decompressed video-streams would be an example of that, which are possible under Linux, if a graphics-driver supports ‘vdpau‘ …