Testing of USB Sound Device Complete.

According to my previous posting, I needed to do a more thorough test of the USB Sound Card I have bought, which is a “Focusrite Scarlett 2i2“.

In particular, I needed to address the discrepancy according to which, the Linux JACK daemon reports capture at 32 bits, while the specifications of the sound card state a 24 bit sample format.

Also, I needed to be sure whether it would run as well at 96 kHz, as it already did at 48 kHz.

According to my more complete test, the 32-bit sample-format which ‘QJackCtl‘ shows me, which can be viewed in its Messages box, state the ALSA parameters and not the JACK internals. Therefore, JACK has after all chosen to capture and/or play back audio at a physical 32 bits, at the 96 kHz sample-rate. This is not, after all, a statement of the JACK internal behavior.

Since I am using Linux, and since the manufacturer chose to rate this capture device as only being capable of 24-bit capture, I must assume that for hardware reasons the device uses 32-bit registers, but that only the first, most-significant 24 of those bits are accurate. Therefore, when I open ‘QTractor‘ – the Digital Audio Workstation / Tracker application, it is best to truncate its capture format to 24 bits as well, which is most probably what the Windows or Mac drivers for this device do.

Aside from that, using QTractor next, to capture a 96 kHz, 24-bit, stereo FLAC file was easy and uneventful. Further, the stability of my software suggests that I can play with the GUIs as much as I need to, to figure them out, and I will not screw anything up.

After I closed JACK, I next imported this FLAC file, that plays for 14 seconds, into “Audacity“, which has been set up to use the default sound settings (‘PulseAudio‘), and which performs an on-demand re-sampling of the FLAC file.

The on-demand FLAC playback is not filtered well by Audacity, but since it is running at 96 kHz, compared with the 44.1 kHz that the internal sound of the laptop runs at, this observation is not surprising.

And then the captured sound clip simply contains, what I spoke into my microphone.

Dirk

 

USB Sound Card

One of the recent developments in Computing is, that the actual PCs and laptops have relatively poor sound-chip-sets inside, but that we can add an external sound card via USB. I refer to these as ‘USB Sound Cards’, but think that most people just refer to them as ‘USB Sound Devices’. An actual sound card, used to refer to a PCIe interface card, which we could physically insert into our PC bus, inside the case.

When people buy a USB microphone, because the USB connection is digital, they are in fact buying the Analog / Digital converter inside that microphone, which also makes it the logical equivalent to a sound card. And the fact that it would be a USB mike, does not imply worse quality than an external sound card. To the contrary, users can expect their USB mikes to outperform the internal sound on their devices, which is the whole point in buying them.

I have embarked on yet another project, which is to buy an external sound card that is physically separated from any actual mike or sound source, and to buy a quality mike as well. Hence, I have received my USB sound device already, that has 2 output channels and 2 input channels.

Mine is a “Focusrite Scarlett 2i2” USB Sound Device, even though I usually try not to make endorsements or indictments of commercial products. It is stated to be capable of sampling at 48 and 96 kHz, and stated to be capable of 24-bit precision. It requires a USB 2 connection.

Because sound is taken very seriously with such devices, its only available inputs are a combined XLR / TRS jack each (not a 3.5mm mini-cable). This means that I am still waiting for my XLR-jack microphone to arrive, without which I cannot test the Focusrite. ( :1 )

A plausible question which some readers might ask would be, Why did Dirk not just buy a USB mike? And my answer would be, Because what I pictured wanting was closer to a USB Sound Card, hence an Analog / Digital converter, that can accept a variety of input devices.

But this would also be the context, in which it might make sense to switch my laptop ‘Klystron’ into JACK sound-mode, which supports real-time 48 kHz at 24 bits, and which also supports 96 kHz…

After all, not long ago I was pondering what the settings should be, with which JACK will start, in terms of sample-rate etc..

A key point of this project is again, to test whether the device will work properly under Linux. ( :2 )

Continue reading USB Sound Card