Widening Our 3D Graphics Capabilities under FOSS

Just so that I can say that my 3D Graphics / Model Editing capabilities are not strictly limited to “Blender”, I have just installed the following Model Editors on the Linux computer I name ‘Klystron’, that are not available through my package-manager:

I felt that it might help others for me to note the URLs above, since correct and useful URLs can be hard to find.

In addition, I installed the following Ray-Tracing Software-Rendering Engines, which do not come with their own Model Editors:

Finally, the following was always available through my package manager:

  • Blender
  • K-3D
  • MeshLab
  • Wings3D

 

  • PovRay

 

In order to get ‘Ayam’ to run properly – i.e., be able to load its plugins and therefore load ‘Aqsis’ shaders, I needed to create a number of symlinks like so:

( Last Updated on 10/31/2017, 7h55 )

Continue reading Widening Our 3D Graphics Capabilities under FOSS

More about Framebuffer Objects

In the past, when I was writing about hardware-accelerated graphics – i.e., graphics rendered by the GPU – such as in this article, I chose the phrasing, according to which the Fragment Shader eventually computes the color-values of pixels ‘to be sent to the screen’. I felt that this over-simplification could make my topics a bit easier to understand at the time.

A detail which I had deliberately left out, was that the rendering target may not be the screen in any given context. What happens is that memory-allocation, even the allocation of graphics-memory, is still carried out by the CPU, not the GPU. And ‘a shader’ is just another way to say ‘a GPU program’. In the case of a “Fragment Shader”, what this GPU program does can be visualized better as shading, whereas in the case of a “Vertex Shader”, it just consists of computations that affect coordinates, and may therefore be referred to just as easily as ‘a Vertex Program’. Separately, there exists the graphics-card extension, that allows for the language to be the ARB-language, which may also be referred to as defining a Vertex Program. ( :4 )

The CPU sets up the context within which the shader is supposed to run, and one of the elements of this context, is to set up a buffer, to which the given, Fragment Shader is to render its pixels. The CPU sets this up, as much as it sets up 2D texture images, from which the shader fetches texels.

The rendering target of a given shader-instance may be, ‘what the user finally sees on his display’, or it may not. Under OpenGL, the rendering target could just be a Framebuffer Object (an ‘FBO’), which has also been set up by the CPU as an available texture-image, from which another shader-instance samples texels. The result of that would be Render To Texture (‘RTT’).

Continue reading More about Framebuffer Objects