Why some people might still want to put Polarizers on their Cameras

One concept which exists in digital photography, is that we can remove any need for special filters, just by using software to modify or rearrange the colors within a photo or video we have shot. And one problem with this claim is, the fact that software can only change the contents of an image, based on information already stored in its pixels. Hence, the color-vectors of resulting pixels, need to be derived from those of captured pixels.

Thus, if we have taken a photo of a gray, hazy day scene, and if we wanted the sky to look more blue, and if we wanted features in the scene to look more yellow, then we could be creative in the coding of our software, so that it performs a per-channel gamma-correction, raising the blue channel to an exponent greater than one, while raising the red and green channels to an exponent less than one. And we might find that regions within the image which were already more blue, will seem blue more-strongly, while regions which did not, will end up looking more yellow, as if sunlit.

(I suppose that while we are at it, we would also want to normalize each color-vector first, and store its original luminance in a separate register, so that our effect only influences coloration in ways not dependent on luminance, and so that the original luminance can be restored to the pixel afterward.

At that stage of the game, a linear correction could also be computed, with the intent that purely gray pixels should remain gray. )

The problem remains, that the entire image could have colors  washed out, so that the sky looks gray, and the subject does as well. So then, our software would have nothing on which to base its differentiation.

But light that occurs naturally in scenes tends to be polarized. Hence, light that came from the sky will have an angle of plane-polarization to it, while light which has been scattered by the scene will have more-randomized polarization. Hence, if we have a DSLR camera, we can mount polarization filters which tend to absorb blue light more, if it is polarized along one plane, while absorbing yellow light more, which is polarized at right-angles to the same plane.

The idea is that the filter could be mounted on our camera-lens, in whatever position gives the sky a blue appearance, and we can hope that the entire landscape-photo also looks as if sunlit.

Then, the actual pixels of the camera will have captured information in a way influenced by polarization, which they would normally not do, any more than Human Eyes would normally do so.

Continue reading Why some people might still want to put Polarizers on their Cameras

Quantum Mechanics is Falsifiable.

One concept which exists in Science, is that certain theories are Falsifiable. This means that a given hypothesis will predict some sort of experimental outcome, which other theories would not predict, and then an experiment can be performed to test whether this outcome is according to the theory. If it is not, then this test will break the theory, and will thus falsify it.

Quantum Mechanics is often Falsifiable. If the reader thinks it is not, then maybe the reader is confusing Quantum Mechanics with String Theory, which is supposedly not falsifiable? And thinking that String Theory is just the same thing as Quantum-Mechanics, is a bit like thinking that Cosmology is just the same thing as Astronomy.

According to Quantum Mechanics, light can be polarized, just as it can according to the classical, wave-based theory of light. Only, because according to Quantum-Mechanics light is driven by particles – by photons – its explanation of polarization is quite different from polarized light, according to the classical, electrodynamic explanation.

According to wave-based light, plane-polarized light is the primary phenomenon, and circular-polarized light is secondary. Circular-polarized light would follow, when waves of light are polarized in two planes at right-angles to each other, but when these waves also have a 90⁰ phase-shift.

According to Quantum-Mechanics, the photon is in itself a circular-polarized quantum of light, of which there can trivially be left- and right-handed examples. According to Quantum-Mechanics, plane-polarized light forms, when left- and right-handed photons pair up, so that their electrostatic components form constructive interference in one plane, while canceling at right-angles to that plane.

From a thermodynamic point of view, there is little reason to doubt that photons could do this, since the particles which make up matter are always agitated, and since the photons in an original light-source also have some random basis. So a conventional plane-polarizing filter, of the kind that we used to attach to our film-cameras, would not be so hard to explain. It would just need to phase-shift the present left-handed photons in one way, while phase-shifting the present right-handed ones oppositely, until they line up.

But there exists one area in which the predictions of Quantum-Mechanics do not match those of classical wave-mechanics. If we are given a digital camera that accepts lens-attachments, we will want to attach circular polarizing filters, instead of plane-polarizing filters. And the classical explanation of what a circular polarizer does, is first to act as a plane-polarizer, which thereby selects a plane of polarization which we want our camera to be sensitive to, but the output of which is next circularly-polarized, so that light reaches the autofocus mechanism of the camera, which is still not plane-polarized. Apparently, fully plane-polarized light will cause the autofocus to fail.

This behavior of a polarizer is easily explained according to Quantum-Mechanics. The plane-polarized light which is at first admitted by our filter, already possesses left- and right-handed photons. After that, we could visualize sorting out the photons that are circular-polarized in the wrong direction.

But the opposite behavior of a filter would not be predicted by Quantum-Mechanics. According to that, if we first pass randomly-polarized light through a circular polarizer, and if we then pass the resulting beam into a plane-polarizer, we should not be able to obtain plane-polarized output from the last polarizer.

According to the classical explanation of light, this should still be an easy thing to do. Our circularly-polarized light is supposed to have two components at right-angles, and our plane-polarizer should only allow vibration in one plane. But according to Quantum-Mechanics, if the incident beam is already circularly-polarized, it should only consist of either left-handed or right-handed photons, and then a simple filter should not be able to conjure photons that are not present in the original beam. And so our circularly-polarized light should not be convertible into plane-polarized light.

Continue reading Quantum Mechanics is Falsifiable.