Quantum Mechanics is Falsifiable.

One concept which exists in Science, is that certain theories are Falsifiable. This means that a given hypothesis will predict some sort of experimental outcome, which other theories would not predict, and then an experiment can be performed to test whether this outcome is according to the theory. If it is not, then this test will break the theory, and will thus falsify it.

Quantum Mechanics is often Falsifiable. If the reader thinks it is not, then maybe the reader is confusing Quantum Mechanics with String Theory, which is supposedly not falsifiable? And thinking that String Theory is just the same thing as Quantum-Mechanics, is a bit like thinking that Cosmology is just the same thing as Astronomy.

According to Quantum Mechanics, light can be polarized, just as it can according to the classical, wave-based theory of light. Only, because according to Quantum-Mechanics light is driven by particles – by photons – its explanation of polarization is quite different from polarized light, according to the classical, electrodynamic explanation.

According to wave-based light, plane-polarized light is the primary phenomenon, and circular-polarized light is secondary. Circular-polarized light would follow, when waves of light are polarized in two planes at right-angles to each other, but when these waves also have a 90⁰ phase-shift.

According to Quantum-Mechanics, the photon is in itself a circular-polarized quantum of light, of which there can trivially be left- and right-handed examples. According to Quantum-Mechanics, plane-polarized light forms, when left- and right-handed photons pair up, so that their electrostatic components form constructive interference in one plane, while canceling at right-angles to that plane.

From a thermodynamic point of view, there is little reason to doubt that photons could do this, since the particles which make up matter are always agitated, and since the photons in an original light-source also have some random basis. So a conventional plane-polarizing filter, of the kind that we used to attach to our film-cameras, would not be so hard to explain. It would just need to phase-shift the present left-handed photons in one way, while phase-shifting the present right-handed ones oppositely, until they line up.

But there exists one area in which the predictions of Quantum-Mechanics do not match those of classical wave-mechanics. If we are given a digital camera that accepts lens-attachments, we will want to attach circular polarizing filters, instead of plane-polarizing filters. And the classical explanation of what a circular polarizer does, is first to act as a plane-polarizer, which thereby selects a plane of polarization which we want our camera to be sensitive to, but the output of which is next circularly-polarized, so that light reaches the autofocus mechanism of the camera, which is still not plane-polarized. Apparently, fully plane-polarized light will cause the autofocus to fail.

This behavior of a polarizer is easily explained according to Quantum-Mechanics. The plane-polarized light which is at first admitted by our filter, already possesses left- and right-handed photons. After that, we could visualize sorting out the photons that are circular-polarized in the wrong direction.

But the opposite behavior of a filter would not be predicted by Quantum-Mechanics. According to that, if we first pass randomly-polarized light through a circular polarizer, and if we then pass the resulting beam into a plane-polarizer, we should not be able to obtain plane-polarized output from the last polarizer.

According to the classical explanation of light, this should still be an easy thing to do. Our circularly-polarized light is supposed to have two components at right-angles, and our plane-polarizer should only allow vibration in one plane. But according to Quantum-Mechanics, if the incident beam is already circularly-polarized, it should only consist of either left-handed or right-handed photons, and then a simple filter should not be able to conjure photons that are not present in the original beam. And so our circularly-polarized light should not be convertible into plane-polarized light.

Continue reading Quantum Mechanics is Falsifiable.

How Magnetic Fields Can Bend Space

According to classical concepts in Physics, Gravitational Fields can bend space, while Magnetic Fields are orthogonal to them, and as long as that model does not break, no intensity of Magnetic Field, will do what a Gravitation Field does.

But there are many ways in which the classical theories of Physics have been replaced by more-controversial ones, based on Quantum Mechanics.

(Revised 10/19/2016)

One subject which Quantum-Mechanics describes, is that of Virtual Particles. And this is my best stab at explaining ‘how they work':

The ‘normal state’ of matter, is to have positive energy, which is really just a confusing way to say that matter has positive mass, since mass and energy are equivalent, and since photons, that are generally perceived as only consisting of energy, can collide with nuclei, and cause matter-antimatter particle-pairs to be created, the combined mass of which must not exceed the energy of the incident gamma-ray photon.

This concept of matter possibly having positive energy can be misread, because the particle in question could be an electron, the electrical charge of which is defined as negative. This negative electrical charge does not prevent the electron from being positive matter, in the sense that its electrical properties are orthogonal to its mass, as a property.

But there was a famous Physicist named Dirac, who discovered quite by accident, that in correspondence with the positive-energy / mass -state of a particle, a negative-energy state is also ‘possible’, because that negative state by itself does not lead to contradictions.

The ‘inverse electron’ is positively charged, and opposite the regular electron in every way, including that the inverse one has positive charge, (and negative mass and energy). If the electron was left-handed, the positron will be right-handed.

Quite by accident, Dirac had discovered antimatter.

(Edit 05/25/2017 : It should be pointed out that this initial theory of Antimatter stands in contradiction with the modern, observed fact, that antimatter has positive mass, even though in some ways, it’s supposed to exist in opposition to ‘regular matter’. Hence, the paradox has already been commented on in depth, that while in the laboratory, Scientists are only able to convert energy into matter and antimatter simultaneously, the observed Universe consists almost entirely of matter.

Scientists cannot explain why this inconsistency takes place; they can only measure that it does.

It’s assumed that the reader is already familiar with this, and this posting is designed to have a liberal look at the subject, which could open up ways to rethink it. Trying to rethink a subject, while clinging to every assumption we may make about it, will usually not lead to any new insights. )

But under normal circumstances, the properties of empty space are defined such, that the energy-state of the electrons equals zero, which simply means that they do not exist. Yet, there is some small probability, that both a negative a positive-energy electron exist simultaneously, yet temporarily. Over slightly longer distances, relative to their distances of uncertainty, their properties cancel out. “Virtual Particle Phenomena” arise, when these particle-properties fail to cancel out completely. This usually requires some catalyst to happen, that catalyst having to consist of positive energy.

An extremely strong magnetic field – which would have to be stronger, even, than the magnetic field of a regular neutron star – is capable of evoking an asymmetry, in the paired, virtual particles of empty space. And then, if the magnetic field becomes as strong as that observed belonging to a type of start called a ‘magnetar’, a gamma-ray photon that crosses it, can cause a particle-antiparticle pair to be formed, which consume the photon, and which promptly annihilate, thus leaving behind two or more photons, that are less-energetic than the original photon was.

And so by distorting the relationship between a particle and its inverse, as belonging to a virtual-particle pair, a magnetic field can in fact have an effect on empty space. I do not know whether this meets the criteria of distorting space adequately.


I have a piece of personal speculation to add. It might be that Dirac had an incorrect way of working with this subject.

Continue reading How Magnetic Fields Can Bend Space