A Basic Limitation in Stereo FM Reproduction

One of the concepts which exist in modern, high-definition sound, is that Human Sound perception can take place between 20 Hz and 20kHz, even though those endpoints are somewhat arbitrary. Some people cannot hear frequencies as high as 20kHz, especially older people, or anybody who just does not have good hearing. Healthy, young children and teenagers can typically hear that entire frequency range.

But, way back when FM radio was invented, sound engineers had flawed data about what frequencies Humans can hear. It was given to them as data to work with that Humans can only hear frequencies from 30Hz to 15kHz. And so, even though Their communications authorities had the ability to assign frequencies somewhat arbitrarily, they did so in a way that was based on such data. (:1)

For that reason, the playback of FM Stereo today, using household receivers, is still limited to an audio frequency range from 30Hz to 15kHz. Even very expensive receivers will not be able to reproduce sound, that was once part of the modulated input, outside this frequency range, although other reference points can be applied, to try to gauge how good the sound quality is.

There is one artifact of this initial standard which was sometimes apparent in early receivers. Stereo FM has a pilot frequency at 19kHz, which a receiver needs to lock an internal oscillator to, but in such a way that the internal oscillator runs at 38kHz, but such that this internal oscillator can be used to demodulate the stereo part of the sound. Because the pilot signal which is actually part of the broadcast signal is ‘only’ at 19kHz, this gives an additional reason to cut off the audible signal at ‘only’ 15Khz; the pilot is not meant to be heard. But, way back in the 1970s and earlier, Electrical Engineers did not have the type of low-pass filters available to them which they do now, that are also known as ‘brick-wall filters’, or filters that attenuate frequencies above the cutoff frequency very suddenly. Instead, equipment designed to be manufactured in the 1970s and earlier, would only use low-pass filters with gradual ‘roll-off’ curves, to attenuate the higher frequencies progressively more, above the cutoff frequency by an increasing distance, but in a way that was gentle. And in fact, even today the result seems to be, that gentler roll-off of the higher frequencies, results in better sound, when the quality is measured in other ways than just the frequency range, such as, when sound quality is measured for how good the temporal resolution, of very short pulses, of high-frequency sound is.

Generally, very sharp spectral resolution results in worse temporal resolution, and this is a negative side effect of some examples of modern sound technology.

But then sometimes, when listeners with high-end receivers in the 1970s and before, who had very good hearing, were tuned in to an FM Stereo Signal, they could actually hear some residual amount of the 19kHz pilot signal, which was never a part of the original broadcast audio. That was sometimes still audible, just because the low-pass filter that defined 15kHz as the upper cut-off frequency, was admitting the 19kHz component to a partial degree.

One technical accomplishment that has been possible since the 1970s however, in consumer electronics, was an analog ‘notch filter’, which seemed to suppress one exact frequency – or almost so – and such a notch filter could be calibrated to suppress 19kHz specifically.

Modern electronics makes possible such things as analog low-pass filters with a more-sudden frequency-cut-off, digital filters, etc. So it’s improbable today, that even listeners whose hearing would be good enough, would still be receiving this 19kHz sound-component to their headphones. In fact, the sound today is likely to seem ‘washed out’, simply because of too many transistors being fit on one chip. And when I just bought an AM/FM Radio in recent days, I did not even try the included ear-buds at first, because I have better headphones. When I did try the included ear-buds, their sound-quality was worse than that, when using my own, valued headphones. I’d say the included ear-buds did not seem to reproduce frequencies above 10kHz at all. My noise-cancelling headphones clearly continue to do so.

One claim which should be approached with extreme skepticism would be, that the sound which a listener seemed to be getting from an FM Tuner, was as good as sound that he was also obtaining from his Vinyl Turntable. AFAIK, the only way in which this would be possible would be, if he was using an extremely poor turntable to begin with.

What has happened however, is that audibility curves have been accepted – since the 1980s – that state the upper limit of Human hearing as 20kHz, and that all manner of audio equipment designed since then takes this into consideration. This would include Audio CD Players, some forms of compressed sound, etc. What some people will claim in a way that strikes me as credible however, is that the frequency-response of the HQ turntables was as good, as that of Audio CDs was. And the main reason I’ll believe that is the fact that Quadraphonic LPs were sold at some point, which had a sub-carrier for each stereo channel, that differentiated that stereo channel front-to-back. This sub-carrier was actually phase-modulated. But in order for Quadraphonic LPs to have worked at all, their actual frequency response need to go as high as  40kHz. And phase-modulation was chosen because this form of modulation is particularly immune to the various types of distortion which an LP would insert, when playing back frequencies as high as 40kHz.

About Digital FM:

(Updated 6/24/2019, 14h50 … )

Continue reading A Basic Limitation in Stereo FM Reproduction

Threshold Elimination in Compressed Sound

I’ve written quite a few postings in this blog, about sound compression based on the Discrete Cosine Transform. And mixed in with my thoughts about that – where I was still, basically, trying to figure the subject out – were my statements to the effect that frequency-coefficients that are below a certain threshold of perceptibility could be set to zeroes, thus reducing the total number bits taken up, when Huffman-encoded.

My biggest problem in trying to analyze this is, the fact that I’m considering generalities, when in fact, specific compression methods based on the DCT, may or may not apply threshold-elimination at all. As an alternative, the compression technique could just rely on the quantization, to reduce how many bits per second it’s going to allocate to each sub-band of frequencies. ( :1 ) If the quantization step / scale-factor was high enough – suggesting the lowest quality-level – then many coefficients could still end up set to zeroes, just because they were below the quantization step used, as first computed from the DCT.

My impression is that the procedure which gets used to compute the quantization step remains straightforward:

  • Subdivide the frequencies into an arbitrary set of sub-bands – fewer than 32.
  • For each sub-band, first compute the DCTs to scale.
  • Take the (absolute of the) highest coefficient that results.
  • Divide that by the quality-level ( + 0.5 ) , to arrive at the quantization step to be used for that sub-band.
  • Divide all the actual DCT-coefficients by that quantization step, so that the maximum, (signed) integer value that results, will be equal to the quality-level.
  • How many coefficients end up being encoded to having such a high integer value, remains beyond our control.
  • Encode the quantization step / scale-factor with the sub-band, as part of the header information for each granule of sound.

The sub-band which I speak of has nothing to do with the fact that additionally, in MP3-compression, the signal is first passed through a quadrature filter-bank, resulting in 32 sub-bands that are evenly-spaced in frequencies by nature, and that the DCT is computed of each sub-band. This latter feature is a refinement, which as best I recall, was not present in the earliest forms of MP3-compression, and which does not affect how an MP3-file needs to be decoded.

(Updated 03/10/2018 : )

Continue reading Threshold Elimination in Compressed Sound

Modern Consumer Sound Appreciation

Over recent months, I have been racking my brain, trying to answer questions I have, about how sound that was compressed in the frequency-domain, may or may not be able to preserve phase-information. This does not mean that I, personally, can hear phase-information, nor that specific MP3 Files I have been listening to, would even be good examples of how well modern MP3s compress sound. I suspect that in order to stay in business, the developers of MP3 have in fact been improving their codec, so that when played back correctly, the quality of MP3s will stay in line with more-recent formats that exist, such as OGG Vorbis…

But I think that people under-appreciate my intellectual point of view.

For many months and years, I had my doubts, that MP3 Files can in fact encode ± 180⁰ phase-shifts, i.e. a stereo-difference channel that has the correct polarity with respect to the stereo-sum channel, over a range of frequencies. What my own musings have only taught me in recent days, is that in fact, MP3 is capable of ± 180⁰ phase-separation.

Further, similar types of compression should be capable of better phase-separation than that, If their bit-rates are set high enough, that not too many of their frequency-coefficients get chopped down – according to what I have reasoned out today.

What I also know, is that the sound-formats AC3 and AAC have as an explicit feature, to store surround-sound. MPEG-2 Video Files more-or-less require the use of the AC3 codec for sound, and MP4 Files absolutely require the use of the AAC codec. And, stored in its compressed format, the surround-effect only requires ± 180⁰ phase-accuracy.

This subject is orthogonal to debate which exists, about whether it is of benefit to human listeners, to have sound reproduced at very high sample-rates, or at great bit-depths. Furthermore, I do not fully know what good a very high sample-rate – such as “192kHz” – is supposed to do any listener, if his sound has been MP3-compressed. As far as I am concerned, ultra-high sample-rates have to do with lossless compression, or no compression, which also happen to produce the same file-sizes at that signal-format.

What I did was just check, in what format iTunes downloads music by default. And it downloads its music in AAC Format. All this does for me, is corroborate a claim a friend of mine made, that he can hear his music with full positioning, since that is also the main feature of AAC, and not of MP3.

Continue reading Modern Consumer Sound Appreciation

Another Observation about MP3

An interesting fact about MP3 compression, is that the actual encoding procedure is not constant, but that the decoding procedure is. This means that many of the differences that have come to MP3 in recent years, are optimizations of the encoding, which when played back in an unchanging way, may give better results.

For example, I myself have often written, that to quantize the frequency coefficients is ‘good’, but that to cut them off because deemed inaudible is ‘bad’. Well, why not just set all the assumed audibility thresholds lower? It would not affect the actual decoding of the stream.

Dirk