Installing Visual Studio Code under Linux.

Linux users have often been avid followers, but left thirsting for some ability to run the proprietary applications, that Windows and Mac users have had access to since the beginning of Computing for the Masses. In fact, the narrow supply of Open-Source Applications for various Linux distributions has been aggravated by the fact that many Linux distributions exist, and when one follows the subject to its smallest detail, one finds that every Linux computer evolves into a slightly different version of Linux, because they can all be configured slightly differently, which means that some users will configure their Linux boxes in their own, personalized way. Actually, this is not a very good thing to do, unless you really know what you’re doing. But the mere fact that many, professionally configured Linux distributions exist, has also meant that packages destined for one distribution would either not install on another, or that packages which were not meant to be installed on a given distribution, could actually break it, if the user supplied his ‘root’ privileges, to so-install the package anyhow.

At the same time, the total amount of programming time available to open-source development has always been scarce, which means for the sake of this blog posting, that programming hours ended up divided between different Linux distributions. (:2)

In recent Linux distributions, there have been two main mechanisms developed over the years, to reduce the severity of this problem. In fact, since Debian 9 / Stretch, both these solutions have been available:

  • Flatpaks,
  • Snaps.

For the moment, I’m going to ignore that Flatpaks exist, as a very viable way to install software, just because Flatpaks had as their main purpose, to install purely Linux software, but on a wider variety of Linux distributions. So, why do both ‘Flatpak’ and ‘Snap’ exist? I suppose that one reason they both exist is the fact that each was invented, and that in principle, both work. But another reason why these two vehicles exist is, the fact that ‘Snaps’ are really disk images, which get mounted as loopback devices, and that therefore, ‘Snaps’ can install software which is binary in nature and therefore, not open-source, yet, install such software on a Linux computer, where the emphasis has traditionally been on open-source software. (:3)

Both mechanisms for installing software have a limited interface, of which features on the host computer the guest application is meant to have access to, since, if both methods of installing software were completely unrestricted, Linux users would lose the security which they initially gained, through their choice of Linux. I think that the way it is, ‘Snaps’ tend to have more-severe security restrictions than ‘Flatpaks’ do, and this is also how it should be.

What all of this inspired in Linux users, was the hope that eventually, they would also start to be able to install certain proprietary applications. And, the main goal of this posting is to assess, to what extent that hope seems to have been materializing. And I’m just going to ignore the fact for the moment, that some ‘Snaps’ are really just Linux applications, which their programmers compiled to the additional target, that being a ‘Snap’, and that for this reason, some Snaps just don’t work, usually because their programmers did not take into consideration that on an eventual host computer, each Snap only has access to the Interfaces which the security model allows, even though, when residing on Linux computers natively, the same application ‘just works fine’. For the sake of argument, software developers might exist, who are professional enough in what they do, to compile Snaps as Snaps, which in turn do work as intended.

An idea which could make some Linux users uneasy would be, that the supply of proprietary software available as Snaps, may not have grown as much as hoped, and that Linux users could be looking at a bleak future. Well, in order to get a full idea of how many Snaps are presently available, user can just visit ‘the Snap store’, and browse to see what it has to offer. And this would be the URL:

https://snapcraft.io/

What most Computer Users would seem to notice is the fact, that there is not a huge abundance of software, at least, according to my tastes, and at the time I’m writing this. Also, users do not need to pay for anything at this so-called Snap store. However, I have at least one Snap installed, of which I know, that if I activated that, I’d need to make a one-time payment to its developers, before it would actually function as one user-license.

What I’d just like to explore for the moment is the possibility that a User might want to program and compile code he wrote himself, in his favourite language, such as, in C / C++, or in C#, and that additionally, said user might prefer “Visual Studio Code” as his Editor, as well as his IDE. In reality, Linux users do not depend very strongly on the ability to use ‘VSCode’, as it’s also called, because under Linux, we actually have numerous IDEs to choose between. But let’s say I wanted to write code in these 2(3) languages, and, to use ‘VSCode’ to do so…

(Updated 5/04/2020, 17h50… )

Continue reading Installing Visual Studio Code under Linux.

Why some Linux devs still use spinlocks.

There is An interesting article, on another BB, which explains what some of the effects are, of spinlocks under Linux. But, given that at least under Linux, spinlocks are regarded as ‘bad code’ and constitute ‘a busy-wait loop’, I think that that posting does not explain the subject very well of why, in certain cases, they are still used.

A similar approach to acquiring an exclusive lock – that can exist as an abstract object, which does not really need to be linked to the resource that it’s designed to protect – could be programmed by a novice programmer, if there were not already a standard implementation somewhere. That other approach could read:

 

from time import sleep
import inspect
import thread

def acquire( obj ):
    assert inspect.isclass(obj)
    myID = thread.get_ident()
    if obj.owner is None:
        # Replace .owner with a unique attribute name.
        # In C, .owner needs to be declared volatile.
        # Compiler: Don't optimize out any reads.
        obj.owner = myID
    while obj.owner != myID:
        if obj.owner == 0:
            obj.owner = myID
        sleep(0.02)

def release( obj ):
    assert inspect.isclass(obj)
    if obj.owner is None:
        # In C, .owner needs to be declared volatile.
        obj.owner = 0
        return
    if obj.owner == thread.get_ident():
        obj.owner = 0

 

(Code updated 2/26/2020, 8h50…

I should add that, in the example above, Lines 8-12 will just happen to work under Python, because multi-threading under Python is in fact single-threaded, and governed by a Global Interpreter Lock. The semantics that take place between Lines 12 and 13 would break in the intended case, where this would just be pseudo-code, and where several clock cycles elapse, so that the ‘Truth’ which Line 13 tests may not last, just because another thread would have added a corresponding attribute on Line 12. OTOH, adding another sleep() statement is unnecessary, as those semantics are not available, outside Python.

In the same vein, if the above code is ported to C, then what matters is the fact that in the current thread, several clock-cycles elapse between Lines 14 and 15. Within those clock cycles, other threads could also read that obj.owner == 0, and assign themselves. Therefore, the only sleep() instruction is dual-purpose. Its duration might exceed the amount of time the cache was slowed down to, to execute multiple assignments to the same memory location. After that, one out of possibly several threads would have been the last, to assign themselves. And then, that thread would also be the one that breaks out of the loop.

However, there is more that could happen between Lines 14 and 15 above, than cache-inefficiency. An O/S scheduler could cause a context-switch, and the current thread could be out of action for some time. If that amount of time exceeds 20 milliseconds, then the current thread would assign itself afterwards, even though another thread has already passed the retest of Line 13, and assumes that it owns the Mutex. Therefore, better suggested pseudo-code is offered at the end of this posting…

)


 

This pseudo-code has another weakness. It assumes that every time the resource is not free, the program can afford to wait for more than 20 milliseconds, before re-attempting to acquire it. The problem can crop up, that the current process or thread must acquire the resource, within microseconds, or even within nanoseconds, after it has become free. And for such a short period of time, there is no way that the O/S can reschedule the current CPU core, to perform any useful amount of work on another process or thread. Therefore, in such cases, a busy-wait loop becomes The Alternative.

I suppose that another reason, for which some people have used spinlocks, is just due to bad code design.


 

Note: The subject has long been debated, of what the timer interrupt frequency should be. According to kernel v2.4 or earlier, it was 100Hz. According to kernel v2.6 and later, it has been 1000Hz. Therefore, in principle, an interval of 2 milliseconds could be inserted above (in case the resource had not become free). However, I don’t really think that doing so would change the nature of the problem.

Explanation: One of the (higher-priority, hardware) interrupt requests consists of nothing but a steady pulse-train, from a programmable oscillator. Even though the kernel can set its frequency over a wide range, this frequency is known not to be terribly accurate. Therefore, assuming that the machine has the software installed, that provides ‘strict kernel marshalling’, every time this interrupt fires, the system time is advanced by a floating-point number, that is also adjusted over a period of hours and days, so that the system time keeps in-sync with an external time reference. Under Debian Linux, the package which installs that is named ‘ntp’.

 

There exist a few other tricks to understand, about how, in practice, to force an Operating System which is not an RTOS, to behave like a Real-Time O/S. I’ve known a person who understood computers on a theoretical basis, and who had studied Real-Time Operating Systems. That’s a complicated subject. But, given the reality that his operating system was not a Real-Time O/S, he was somewhat stumped by why then, it was able to play a video-clip at 24 FPS…

(Updated on 3/12/2020, 13h20 …)

Continue reading Why some Linux devs still use spinlocks.

Inkscape Extension ‘svg2tikz’ revisited.

In this earlier posting, I had written about the low-performing 3rd-party Inkscape Extension known as ‘svg2tikz’. Nevertheless, this extension may prove useful to some users, who wish to import an arbitrary document-type into Inkscape – preferably vector-based – and who wish to convert that into LaTeX in some way. And it seems that, even though this project was abandoned some time ago, work has slowly begun to resume on its source-code. And so, I should also fine-tune some of the earlier commentary I had made about this extension.

First off, there is an important detail about how to compile and install this extension, which its devs fail to point out anywhere. It needs to be built and installed, using Python 3, while many Linux computers still default to Python 2.7. Therefore, the commands to build and install it are:

 


$ python3 setup.py build
$ su
(...)
# python3 setup.py install

 

If one neglects this detail, then Unicode support is left out, and usually, SVG Files etc., will contain some Unicode characters. Further, as the Github comment states, while the importing of raster-based images is now supported, their import as Base-64 encoded, inline data is not. Therefore, within Inkscape, for example if a PDF File is being imported, the option needs to be unchecked, to ‘Embed’ graphics. And when Saving a Copy to TiKz Format, the option should also be unchecked, to ‘Indent Groups’.

But this last detail leads me to an important, additional observation. I have always known that the export of Text with the Figure has been dodgy. But lately, either because I’ve become more observant, or, because the behaviour of the latest version of the extension has improved, I’ve noticed what, exactly, goes wrong with Exporting Text along with the Figure.

(Updated 2/11/2020, 1h05 … )

Continue reading Inkscape Extension ‘svg2tikz’ revisited.