Hypothetically, how an FFT-based equalizer can be programmed.

One of the concepts which I only recently posted about was, that I had activated an equalizer function, that was once integrated into how the PulseAudio sound server works, but which may be installed with additional packages, in more-recent versions of Debian Linux. As I wrote, to activate this under Debian 8 / Jessie was a bit problematic at first, but could ultimately be accomplished. The following is what the controls of this equalizer look like, on the screen:

Equalizer_1

And, this is what the newly-created ‘sink’ is named, within the (old) KDE-4 desktop manager’s Settings Panel:

Equalizer_2

What struck me as remarkable about this, was its naming, as an “FFT-based Equalizer…”. I had written an earlier posting, about How the Fast Fourier Transform differs from the Discrete Fourier Transform. And, because I tend to think first, about how convolutions may be computed, using a Discrete Cosine Transform, it took me a bit of thought, to comprehend, how an equalizer function could be implemented, based on the FFT.

BTW, That earlier posting which I linked to above, has as a major flaw, a guess on my part about how MP3 sound compression works, that makes a false assumption. I have made more recent postings on how sound-compression schemes work, which no longer make the same false assumption. But otherwise, that old posting still explains, what the difference between the FFT and other, Discrete Transforms is.

So, the question which may go through some readers’ minds, like mine, would be, how a graphic equalizer based on the FFT can be made computationally efficient, to the maximum. Obviously, when the FFT is only being used to analyze a sampling interval, what results is a (small) number of frequency coefficients, spaced approximately uniformly, over a series of octaves. Apparently, such a set of coefficients-as-output, needs to be replaced by one stream each, that isolates one frequency-component. Each stream then needs to be multiplied by an equalizer setting, before being mixed into the combined equalizer output.

I think that one way to compute that would be, to replace the ‘folding’ operation normally used in the Fourier Analysis, with a procedure, that only computes one or more product-sums, of the input signal with reference sine-waves, but in each case except for the lowest frequency, over only a small fraction of the entire buffer, which becomes shorter according to powers of 2.

Thus, it should remain constant that, in order for the equalizer to be able to isolate the frequency of ~31Hz, a sine-product with a buffer of 1408 samples needs to be computed, once per input sample. But beyond that, determining the ~63Hz frequency-component, really only requires that the sine-product be computed, with the most recent 704 samples of the same buffer. Frequency-components that belong to even-higher octaves can all be computed, as per-input-sample sine-products, with the most-recent 352 input-samples, etc. (for multiples of ~125Hz). Eventually, as the frequency-components start to become odd products of an octave, an interval of 176 input samples can be used, for the frequency-components belonging to the same octave, thus yielding the ~500Hz and ~750Hz components… After that, in order to filter out the ~1kHz and the ~1.5kHz components, a section of the buffer only 88 samples long can be used…

Mind you, one alternative to doing all that would be, to apply a convolution of fixed length to the input stream constantly, but to recompute that convolution, by first interpolating frequency-coefficients between the GUI’s slider-positions, and then applying one of the Discrete Cosine Transforms to the resulting set of coefficients. The advantage to using a DCT in this way would be, that the coefficients would only need to be recomputed once, every time the user changes the slider-positions. But then, to name the resulting equalizer an ‘FFT-based’ equalizer, would actually be false.

(Updated 7/25/2020, 11h15… )

Continue reading Hypothetically, how an FFT-based equalizer can be programmed.

Some realizations about Digital Signal Processing

One of the realizations which I’ve just come across recently, about digital signal processing, is that apparently, when up-sampling a digital stream twofold, just for the purpose of playing it back, simply to perform a linear interpolation, to turn a 44.1kHz stream into an 88.2kHz, or a 48kHz stream into a 96kHz, does less damage to the sound quality, than I had previously thought. And one reason I think this is the factual realization that to do so, really achieves the same thing that applying a (low-pass) Haar Wavelet would achieve, after each original sample had been doubled. After all, I had already said, that Humans would have a hard time being able to hear that this has been done.

But then, given such an assumption, I think I’ve also come into more realizations, of where I was having trouble understanding what exactly Digital Signal Processors do. It might be Mathematically true to say, that a convolution can be applied to a stream after it has been up-sampled, but, depending on how many elements the convolution is supposed to have, whether or not a single DSP chip is supposed to decode both stereo channels or only one, and whether that DSP chip is also supposed to perform other steps associated with playing back the audio, such as, to decode whatever compression Bluetooth 4 or Bluetooth 5 have put on the stream, it may turn out that realistic Digital Signal Processing chips just don’t have enough MIPS – Millions of Instructions Per Second – to do all that.

Now, I do know that DSP chips exist that have more MIPS, but then those chips may also measure 2cm x 2cm, and may require much of the circuit-board they are to be soldered in to. Those types of chips are unlikely to be built-in to a mid-price-range set of (Stereo) Bluetooth Headphones, that have an equalization function.

But what I can then speculate further is that some combination of alterations of these ideas should work.

For example, the convolution that is to be computed could be computed on the stream before it has been up-sampled, and it could then be up-sampled ‘cheaply’, using the linear interpolation. The way I had it before, the half-used virtual equalizer bands would also accomplish a kind of brick-wall filter, whereas, to perform the virtual equalizer function on the stream before up-sampling would make use of almost all the bands, and doing it that way would halve the amount of MIPS that a DSP chip needs to possess. Doing it that way would also halve the frequency linearly separating the bands, which would have created issues at the low end of the audible spectrum.

Alternatively, implementing a digital 9- or 10-band equalizer, with the
bands spaced an octave apart, could be achieved after up-sampling, instead of before up-sampling, but again, much more cheaply in terms of computational power required.

Dirk

Wavelet Decomposition of Images

One type of wavelet which exists, and which has continued to be of some interest to computational signal processing, is the Haar Wavelet. It’s thought to have a low-pass and a high-pass version complementing each other. This would be the low-pass Haar Wavelet:

[ +1 +1 ]

And this would be the high-pass version:

[ +1 -1 ]

These wavelets are intrinsically flawed, in that if they are applied to audio signals, they will produce poor frequency response each. But they do have as an important Mathematical property, that from its low-pass and its high-pass component, the original signal can be reconstructed fully.

Now, there is also something called a wavelet transform, but I seldom see it used.

If we wanted to extend the Haar Wavelet to the 2D domain, then a first approach might be, to apply it twice, once, one-dimensionally, along each axis of an image. But in reality, this would give the following low-frequency component:

[ +1 +1 ]

[ +1 +1 ]

And only, the following high-frequency component:

[ +1 -1 ]

[ -1 +1 ]

This creates an issue with common sense, because in order to be able to reconstruct the original signal – in this case an image – we’d need to arrive at 4 reduced values, not 2, because the original signal had 4 distinct values.

gpu_1_ow

And so closer inspection should reveal, that the wavelet reduction of images has 3 distinct high-frequency components: ( :1 )

Continue reading Wavelet Decomposition of Images

An Observation about the Daubechies Wavelet and PQF

In an earlier posting, I had written about what a wonderful thing Quadrature Mirror Filter was, and that it is better to apply the Daubechies Wavelet than the older Haar Wavelet. But the question remains less obvious, as to how the process can be reversed.

The concept was clear, that an input stream in the Time-Domain could first be passed through a low-pass filter, and then sub-sampled at (1/2) its original sampling rate. Simultaneously, the same stream can be passed through the corresponding band-pass filter, and then sub-sampled again, so that only frequencies above half the Nyquist Frequency are sub-sampled, thereby reversing them to below the new Nyquist Frequency.

A first approximation for how to reverse this might be, to duplicate each sample of the lower sub-band once, before super-sampling them, and to invert each sample of the upper side-band once, after expressing it positively, but we would not want playback-quality to drop to that of a Haar wavelet again ! And so we would apply the same wavelets to recombine the sub-bands. There is a detail to that which I left out.

We might want to multiply each sample of each sub-band by its entire wavelet, but only once for every second output-sample. And then one concern we might have could be, that the output-amplitude might not be constant. I suspect that one of the constraints which each of these wavelets satisfies would be, that their output-amplitude will actually be constant, if they are applied once per second output-sample.

Now, in the case of ‘Polyphase Quadrature Filter’, Engineers reduced the amount of computational effort, by not applying a band-pass filter, but only the low-pass filter. When encoding, the low sub-band is produced as before, but the high sub-band is simply produced as the difference between every second input-sample, and the result that was obtained when applying the low-pass filter. The question about this which is not obvious, is ‘How does one recombine that?’

And the best answer I can think of would be, to apply the low-pass wavelet to the low sub-band, and then to supply the sample from the high sub-band for two operations:

  1. The first sample from the output of the low-pass wavelet, plus the input sample.
  2. The second sample from the output of the low-pass wavelet, minus the same input sample, from the high sub-band.

Continue reading An Observation about the Daubechies Wavelet and PQF