The Myth of Wave / Particle Duality

This posting describes some of the History, which many people may be bypassing, in their appreciation of Quantum Mechanics.

About until the 1920s, ‘light’ was largely thought to consist of waves. But a problem with that was, how to explain, why light can travel through apparently empty space. After all, the light that reaches us from distant stars is not fundamentally different, from light that originates on Planet Earth. And until the 1920s, it was believed that there exists a mysterious “Aether“, which transmitted light through space.

A basic premise of wave-propagation, such as in the case of sound-waves, is that there must first be some sort of medium, to conduct the waves, which in the case of sound may be air. But the need for the existence of a medium, also explains why there is no sound in space.

But during the 1920s, the existence of an aether was disproved. Decisively. And so another explanation was needed, of what constitutes light. And the thought seemed more logical, that particles can easily travel through empty space – hence, photons. Even though this was not actually the first form in which photons were theorized.

But then obviously, this raises questions, about how these particles are supposed to relate to waves, where waves were at first easier to observe.

I think that the way many people today are presented, what Quantum-Mechanics consists of, is just, “Wave / Particle Duality”. But then what many students believe – and what I once believed myself – is, that Quantum Mechanics holds some sort of secret key, as to how Matter and Energy might simultaneously consist of particles and waves. And in reality, QM holds no such decisive, secret answers. The only real secret which QM may hold, is a detail that could be embarrassing to the present way in which QM works.

Continue reading The Myth of Wave / Particle Duality

Emphasizing a Presumed Difference between OGG and MP3 Sound Compression

In this posting from some time ago, I wrote down certain details I had learned about MP3 sound compression. I suppose that while I did write, that the Discreet Cosine Transform coefficients get scaled, I may have missed to mention in that same posting, that they also get quantized. But I did imply it, and I also made up for the omission in this posting.

But one subject which I did mention over several postings, was my own disagreement with the practice, of culling frequency-coefficients which are deemed inaudible, thus setting those to zero, just to reduce the bit-rate in one step, hoping to get better results, ‘because a lower initial bit-rate also means that the user can select a higher final bit-rate…’

In fact, I think that some technical observers have confused two separate processes that take place in MP3:

  1. An audibility threshold is determined, so that coefficients which are lower than that are set to zero.
  2. The non-zero coefficients are quantized, in such a way that the highest of them fits inside a fixed maximum, quantized value. Since a scale-factor is computed for one frequency sub-band, this also implies that close to strong frequency coefficients, weaker ones are just quantized more.

In principle, concept (1) above disagrees with me, while concept (2) seems perfectly fine.

And so based on that I also need to emphasize, that with MP3, first a Fast-Fourier Transform is computed, the exact implementation of which is not critical for the correct playback of the stream, but the only purpose of which is to determine audibility thresholds for the DCT transform coefficients, the frequency-sub-bands of which must fit the standard exactly, since the DCT is actually used to compress the sound, and then to play it back.

This FFT can serve a second purpose in Stereo. Since this transform is assumed to produce complex numbers – unlike the DCT – it is possible to determine whether the Left-Minus-Right channel correlates positively or negatively with the Left-Plus-Right channel, regarding their phase. The way to do this effectively, is to compute the dot-product between two complex numbers, and to see whether this dot-product is positive or negative. The imaginary component of one of the sources needs to be inverted for that to work.

But then negative or positive correlation can be recorded once for each sub-band of the DCT as one bit. This will tell, whether a positive difference-signal, is positive when the left channel is more so, or positive if the right channel is more so.

You see, in addition to the need to store this information, potentially with each coefficient, there is the need to measure this information somehow first.

But an alternative approach is possible, in which no initial FFT is computed, but in which only the DCT is computed, once for each Stereo channel. This might even have been done, to reduce the required coding effort. And in that case, the DCT would need to be computed for each channel separately, before a later encoding stage decides to store the sum and the difference for each coefficient. In that case, it is not possible first to determine, whether the time-domain streams correlate positively or negatively.

This would also imply, that close to strong frequency-components, the weaker ones are only quantized more, not culled.

So, partially because of what I read, and partially because of my own idea of how I might do things, I am hoping that OGG sound compression takes this latter approach.

Dirk

Continue reading Emphasizing a Presumed Difference between OGG and MP3 Sound Compression