How two subjects might be confused, that both have to do with polarized light.

There exists a concept, by which a single photon is visualized as having an electrostatic dipole-moment, which does not lie in a plane, but which performs a corkscrew, either left-handedly, or right-handedly, to start the phenomenon of electromagnetic radiation as based on circularly-polarized light, as opposed to being based primarily on plane-polarization. A quantity of photons could then still form plane-polarized light, not because they interact with each other, but because they coincide with each other in such a way, that their electrostatic fields cancel along one axis, but reinforce perpendicularly to the axis along which they cancel.

In reality, it’s dangerous to make such statements, about what exactly one photon does, because nobody has ever ‘seen’ a photon. We’re mainly able to make more-coarse measurements of what light does, when composed of swarms of photons, and must then deduce what the properties of one photon could be.

(Edit 02/20/2018 :

According to This Experiment, this hypothesis is disproved.

In the macroscopic world, circularly polarized light seems to exist, just as plane-polarized light does, without shedding much light on the subject of how one photon behaves, unless the latter subject is studied in much greater depth. )

But there is the matter of how any of this agrees with the classical, electrodynamic explanation of ‘light’, which would say that it has a magnetic dipole-moment, that oscillates with the same set of frequencies, with which the electrostatic dipole-moment, oscillates, but perpendicularly to the electrostatic moment.

The question could be asked of, If the electrostatic moment was plotted against time, What its phase-position would be, relative to the magnetic moment. And what I claim to know, is that they’d be in-phase.

This subject has been confused at times, with the question of whether the electrostatic component along one plane of polarization, is in-phase or out-of-phase, with the electrostatic component, along the perpendicular plane of polarization. Those are out-of-phase, in the case of circularly-polarized light, as well as in the case of circularly-polarized photons.

(Edit 02/07/2018 : )

 

photon_3

Now, the question about plotting this could get sidetracked, by the question of whether it’s more correct, if where the electrostatic dipole moment, which I’ll say is denoted by the Green line above, is pointing ‘upwards’, the magnetic dipole moment, which I’ll say is denoted by the Red line above, should be pointing ‘towards the viewer’, or ‘away from the viewer’. The way I presently have it, at the left end of the plot, the red line is towards the viewer at that instant. Because magnetic dipole moments differentiate between North and South, while electrostatic dipole moments differentiate between Positive and Negative, these signs of polarity are independent. By convention, the magnetic North pole is denoted by positive numbers. If it was assumed that the Red line corresponds to North, as shown above, then the photon would need to be traveling from the left, to the right, which also corresponds to an increasing parameter (t), just in case anybody is interested in actually analyzing the Math I entered.

(Edit 02/26/2018 :

This also implies that t does not correspond to Time. t us just a variable-name which often denotes a generic parameter. More-positive values of t will arrive on the right, before more-negative values do. )

In that case it should also be noted, that ‘Wolfram Mathematica’ switches the (Y) and (Z) plotting axes, so that (Z) actually faces upwards, but needs to be given as the 3rd input of a parametric 3D plot, while (Y) faces away from the viewer, which is different from how some other 3D plots work. The way I tend to visualize World Coordinates these days, (Y) should be facing Up, and (Z) should be facing Towards the Viewer.

(Updated 02/08/2018 … )

Continue reading How two subjects might be confused, that both have to do with polarized light.

Understanding NMR

Under ‘the term NMR’, people may correctly understand two different subjects:

  1. Why do subatomic particles, in this case nuclei, precess?
  2. How do Engineers exploit this precession, in order to form 2D and 3D images, in ‘NMRI’?

In this posting, I am only going to address subject (1).

Precession and spin are easier to understand, when we can simply apply the Newtonian concepts. Quantum Mechanics today tends to obscure the subject of precession. And so for most of this post, I am going to make the somewhat daft assumption that the precession of subatomic particles, is Newtonian.

If a gyroscope is spinning along an arbitrary axis, and if we apply torque to its axis, this torque integrates into the spin vector – at an angle to the existing spin vector. Unless we are accelerating or slowing down its spin. This results in the spin vector rotating – and thus in precession.

But, if we have seen the demonstration in which an off-axis gyroscope is precessing on a passive pedestal, we also observe that eventually the phenomenon weakens, and that the practical axis seems to shift further and further in the direction gravity is pulling on it.

The reason this weakening takes place, is the fact that some additional torque is being applied to the gyroscope, against the direction in which it is precessing. Otherwise, it would just precess forever. This additional torque could be due to friction with the pedestal, due to air resistance, due to magnetism, or whatever.

An artillery shell is aerodynamically designed, so that as long as it has excess spin, interaction with the air will always push it in the direction of any existing precession, and so this type of object will tend to straighten its axis of spin, into the direction with which it is flying. This would be the equivalent to the gyro from before, straightening up and standing up against gravity again.

Atomic nuclei that have an odd mass number, also have a non-zero spin quantum number, thus having spin, and also have a magnetic dipole moment. The wanton assumption could be made that its magnetic dipole moment is always parallel to its axis of spin. But then if we visualize matter as consisting of nuclei that are separated by vast, less-dense clouds of electrons, it would seem to follow that each nucleus is always precessing in response to local magnetic fields.

And even if we were to apply an external magnetic field to such a system, it would follow that precession could not yet be detected externally, because the nuclei are all out-of-phase. Ostensibly, they would also continue to precess, and to stay out of phase, simply due to an applied magnetic field. The only big difference with the practical gyro should then be, that the magnitude of their spin-vector should never change, since this should be intrinsic.

But if we were to insist on this very Newtonian description, then something else should also happen that is not as obvious. Those thin wisps of electrons should not only react to the applied field, but also locally, to the field of each nucleus precessing. So if we assume conservation of energy, there would also be reactive torque acting on each nucleus, in response to its own precession, because the density of the electron clouds is not zero.

After a certain settling period which is measurable, the nuclei end up aligning themselves with the applied field, resulting in the state that has its lowest-possible potential energy. This takes milliseconds instead of the nanoseconds that some of these behaviors should take on the subatomic scale. Precession has still not been detected.

Likewise, the fact that subatomic decay can take years instead of nanoseconds, refutes certain mundane explanations, of what might be causing that.

Well, one thing that Scientists can do is compute what the dipole moment of such a nucleus is, as well as the magnitude of its angular momentum – spin – and to compute as a function of the applied field-intensity, with what frequency all the nuclei should be precessing… This frequency is called the “Larmor Frequency”.

Continue reading Understanding NMR

Black Holes Again

One of the subjects which is subject to controversy these days, is to what extent a real black hole may (not) have any features.

Certain principles in Physics are thought to be stronger, than the existence of black holes. One of those is ‘conservation of momentum’, and another is ‘conservation of charge’. Conservation of momentum already implies, that a black hole is capable of having spin, because the environment could act on it over time, exerting torque. Conservation of charge is often overlooked.

If for some reason, a black hole was to end up capturing electrons in disproportion to how many protons it captures, then what should also happen is that it should build up negative charge. This idea might cause some laughter, but the result of such a scenario would nevertheless follow.

What can be even harder to foresee, is what would happen if the black hole both had considerable charge, as well as spin. According to general principles in Physics, this would imply a ‘convection current’, and then such a black hole should also have a magnetic field.

Only, until recently it was thought that both the amount of charge-imbalance in captured matter, as well as the rate of spin, should be quite small. It was only a recent estimate I heard of, that the rate of spin was in some cases 1/3 the speed of light !!

Also, it has been proposed that there is an ‘energy jet’ which black holes emit. This energy jet might form from the accretion disk, because a strong magnetic field will generally tend to do two things to a plasma: It will compress a plasma, and it will generally tend to force its path of motion, to follow the lines of force, of the magnetic field. The latter is true, because the individual ionized particle do not travel in straight lines, instead traveling in helical paths, that are curved by an applied magnetic field. The helical paths which charged particles follow, will tend to rotate around the axis of the field, but will extend along its axis.

Well nobody has yet answered, whether the ‘energy jet’ from a black hole, initially consists mostly of protons, or of electrons and protons in a perfectly balanced way… If it was to consist mostly of the more massive protons, then the black hole and its surrounding phenomena should also become increasingly negatively charged… I do not actually visualize, the energy jet from a black hole consisting greatly of electrons…

Dirk