The Simplest Possible Mixer, using MOSFETs.

When a curious person searches the Internet for the circuit diagrams of (electronic) mixers, there is a certain complexity of what he or she will find. Just for people who might not know, the type of mixer I’m referring to is a component which does not add two signals together – which is what the naming might seem to suggest – but rather, which multiplies two signals. In certain cases the mixer will produce output, that contains an additive component as well as a multiplied component. But it’s the multiplied component circuit designers are interested in, because that can be used:

  1. In order to produce ‘mixed frequencies’, between two input frequencies, such as between a local oscillator and a Radio Frequency, resulting in an Intermediate Frequency,
  2. In order to act as a phase discriminator, the output of which will be maximally positive or negative, when two input signals are in-phase, but the output-voltage of which will be some neutral voltage, when the input waves are 90⁰ out-of-phase with each other. In this latter case, two reasonably constant input amplitudes are assumed.

What search results will often show, is somewhat complex mixers, that require either one or two balanced inputs – meaning inputs conditioned such, that they each appear differentially between two input electrodes – and which have as advantage for being designed that way, low distortion of the wave-form(s) supplied differentially in this way.

But sometimes, low distortion is not required. For example, in the case of a PLL – a “Phase-Locked Loop” – It’s assumed that the feedback voltage changes the frequency of a VCO – a “Voltage-Controlled Oscillator” – but with the intended result that two outputs lock in some phase-position, so that the two frequencies that are inputs to the phase-discriminator will be exactly the same frequency. This latter need often arises in the design of ICs. This latter application does not require that the phase-discriminator be particularly linear, nor that its output-voltages, that become feedback voltages, be in any range other than the range which the VCO requires as input.

And so the question can arise, what the simplest way might be to design a mixer, with the added detail that both inputs are unbalanced inputs – i.e., that each input appears at one terminal, and not in an opposing way, at two terminals – and for the sake of argument, our IC might be limited to using enhancement-mode, N-channel MOSFETs as the main active component. And this would be my solution:

Coinc-Det_1.svg

The concept is very simple. If Vin1 and Vin2 are at 180⁰, then M1 and M2 don’t conduct simultaneously. Therefore, R1 and Vcc (the supply voltage) achieve maximally positive average output-voltage. If Vin1 and Vin2 are at 0⁰ phase-position, the two transistors will become conductive in a way that coincides. Therefore, this is actually a Coincidence Detector. And the average  output-voltage will be maximally negative in that case. And, if Vin1 and Vin2 are at a 90⁰ phase-position, then the average output-voltage will be somewhere between the two values mentioned before.

I suppose it should be mentioned that, if the circuit designer knows ahead of time that one of the two inputs has a much higher amplitude than the other, or a more predictable amplitude, then this usually stronger input should be fed to Vin1.

As part of a feedback loop, the output needs to be followed by a low-pass filter, that emulates an integrator over the time-constant which is the fastest, with which that feedback loop is supposed to be able to react to a change in one of the frequencies. The simplest low-pass filter consists of a resistor followed by a capacitor… (:1)

And so, when looking for a way to implement a phase-discriminator, the curious person needs to choose which of the following has greater priority:

  • The simplest circuit-design, or
  • The lowest amount of distortion.

The circuit above will certainly give the highest amount of distortion. :-P

(Updated 7/9/2019, 16h55 … )

Continue reading The Simplest Possible Mixer, using MOSFETs.