What Is A Plasma?

The fact that blood plasma exists in Medicine, should not be confused with the fact that Plasmas exist, that are defined in Physics, and which all matter can be converted to. In short, a Plasma is what becomes of a gas, when its temperature is too hot, for it to be a gas.

The long form of the answer is a bit more complex. In Elementary School, Students are taught that there exist three familiar phases of a given substance: Solid, Liquid and Gas. But according to slightly more advanced knowledge in Physics, there is no real guarantee, that there will always be these three phases. A gas first results when the thermal agitation between molecules becomes stronger – i.e. their temperature hotter – than the force that holds individual molecules together. At that point, the molecules separate and a gas results, the physical behavior of which is approximately what one would obtain, if a swarm of particles was to exist through collisions but through few other interactions.

Similarly, Liquids will form, when the molecules are forced from occupying fixed positions, but when they still don’t expand.

Well, as the degree of thermal agitation (of a Gas) is increased further, first, molecules become separated into atoms, and then, the electrons get separated from their nuclei, as a result of ordinary collisions with other atoms. This results in the negative particles – electrons – following different trajectories than the positive particles – the nuclei. And the result of that is that the collective behavior of the fluid changes, from that of a gas.

When a charged particle crosses the lines of force, of a magnetic field, a force is generated which is perpendicular to both the velocity vector and the magnetic field vector. As a result, the particles can travel without restriction along the lines of magnetic force, but their motion at right angles to it is deflected, and becomes helical. Not only that, but the direction in which the paths of the particles becomes curved, is opposite for the negative and positive particles.

For this reason, Plasmas can be confined by magnetic fields, except along the lines of the magnetic field. Increasing the strength of an applied field will also cause a Plasma to become compressed, as these helices become narrower.

A good natural example of this type of Plasma, is what becomes of the substance of the Sun. Its temperatures are easily hot enough to cause the transition from Gas to Plasma, especially since the temperature inside the Sun is much higher, than the temperatures which are observed at its surface. At 5000K, gasses are still possible. But at hundreds of thousands Kelvin, or at a Million degrees Kelvin, the bulk of the Sun’s substance becomes a Plasma.

Now, if the reader is a skeptic, who has trouble believing that ‘other phases’ can exist, than Solid, Liquid and Gas, there is an example that takes place at lower temperatures, and that involves Oxygen, namely, O2. We’re aware of gaseous O2 as well as liquid O2 that gets used in rocketry. But as the O2 is cooled further, to 54.36K at 1 atmosphere, it solidifies. Thus, it has already demonstrated the 3 phases which we’re taught about in Elementary School. But, if we cool already-solid O2 below an even lower temperature, 43.8K at 1 atmosphere, its phase changes again, into yet another phase, which is also a solid one. It’s currently understood that solid O2 has 6 phases. (:1)

At the same time, many fluids are known to exhibit Supercritical Behavior, which is most commonly, a behavior of a fluid which is normally differentiated between Liquid and Gaseous, losing this differentiation, due to its critical pressure being exceeded, but at temperatures at which fluids are commonly boiled. This has nothing to do with Plasmas, but without any distinction between Liquid and Gaseous, a substance which is ordinarily though to have three phases – such as water – ends up demonstrating only two: Fluid and Non-Fluid.

So there is no ultimate reason for which matter needs to be in one out of three phases.

(Updated 10/14/2018, 10h25 … )

Continue reading What Is A Plasma?

How Chemistry Narrowly Avoids Negating Quantum-Mechanics

According to Quantum-Mechanics, the ultimate solution to the question, of Wave-Particle Duality, no matter how deeply this solution is buried, lies in the idea, that Particles cause Waves. Hence, the particles are more-ultimately real, and waves are not. In certain cases such as phonons, this even extends beyond waves-in-a-vacuum, to sound waves, that can be modeled as quasi-particles.

One rule which this evokes is the notion, that if (A) causes (B) with certainty, then it cannot be true that (B) causes (A). And to my mind, this has presented the greatest challenge with Chemistry.

The way Chemistry is understood to work today, the electrons that were loosely stated to be orbiting the nucleus, are actually occupying Quantum-Mechanical states around the nucleus, thus merely being attached to the nucleus, and they occupy shells, which are subdivided into orbitals. Further, these orbitals have known wave-functions, that follow from QM. Hence, the s2 -orbitals are spherical, the p6 -orbitals are perpendicular, and the d10 and f14 -orbitals have the more-complex geometries, which are possible modes of resonance. If all the orbitals belonging to a shell are filled, then indeed the shell becomes spherical itself, and this is best exhibited with inert gasses, which therefore also have ideal cancellation of the nuclear charge at close distance, and which therefore also lack electronegativity. (:1)

The main point of confusion which is possible here, is in the fact that these orbitals and their wave-functions seemingly define the chemical and physical properties of the element, except for anything related to its mass. The suggestion follows, that since the electrical field of the nucleus is strong enough to manipulate the wave-functions, it can also end up displacing where the particle ultimately occurs. In so doing, this action on the orbital would seem to suggest that the wave-function can also be said to change the particle-parameters, thereby creating a contradiction with the way in which QM is currently taught.

There is a specific observation which we can make about this subject, which causes Chemistry to avoid contradicting QM by the width of a hair.

These s, p, d and f -orbital geometries are only thought to exist, if their electrons are unpaired. Each orbital is capable of holding up to 2 electrons, and an orbital which only holds 1 electron is said to be “half-filled”. It has these formally-defined properties when half-filled.

There has never been a precedence in Chemistry, in which a half-filled orbital can be shared by two atoms. But some sort of entity needs to be shared between 2 or 3 atoms, in order actually to form a bond, and in order to change position around either atom. (:2)

When orbitals are filled by 2 electrons each, these two electrons perform a dance which electrons are already famous for, in which both their spin-vector and their magnetic dipole moment pair up, to cancel out. This is also known as “spin-spin decoupling”, and causes the electron to resemble a Fermion less, resulting in some quasi-particle that resembles a fluid more – i.e. a massive Bose particle.

The same affinity causes electron-pairs to form Cooper Pairs, which ultimately result in superconductivity. But in Chemistry, it forms charge-droplets, which are able to change position on an atom or molecule, and which can be shared between 2 or 3 atoms, thus forming either the sigma-bond or the pi-bond known.

The important fact to understand, is that This quasi-particle does not represent a wave-function, and so its mutability also does not represent the mutability of a wave-function. This charge-droplet has mass.

Continue reading How Chemistry Narrowly Avoids Negating Quantum-Mechanics