There do in fact exist detailed specs about the Scarlett Focusrite 2i2.

One fact which I have written about before, is that I own a Scarlett Focusrite 2i2 USB-sound-device, and that I have tested whether it can be made to work on several platforms not considered standard, such as under Linux, with the JACK sound daemon, and under Android.

One fact which has reassured me, is that The company Web-site does in fact publish full specifications for it by now.

One conclusion which I can reach from this, is that the idea of setting my Linux software to a sample-rate of 192kHz, was simply a false memory. According to my own, earlier blog entry, I only noticed a top sample-rate of 96kHz at the time. And, my Android software only offered me a top sample-rate of 48kHz with this device.

The official specs state that its analog input frequency-response is a very high-quality version of 20Hz-20kHz, while its conversion is stated at 96kHz. What this implies is that when set to output audio at 44.1 or 48kHz, it must apply its own internal down-sampling, i.e. a digital low-pass filter, while at 88.2 or 96kHz, it must be applying the same analog filter, but not down-sampling its digital stream.

And so, whether we should be using it to record at 96kHz or at 48kHz, may depend on whether we think that our audio software will perform down-sampling using higher-quality filters than its internal processing does. But there can be an opposite point of view on that.

Just as some uses of computers see work offloaded from the main CPU, to external acceleration hardware, we could just as easily decide that the processing power built-in to this external sound device, can ease the workload on our CPU. After all, just because I got no buffer underruns during a simple test, does not imply necessarily, that I would get no sound drop-outs, if I was running a complex audio project in real-time.


(Edit 03/21/207 : )

I will predict that this capture device has a weakness. According to what I have written, its A/D converter has a real Nyquist Frequency of 48kHz, when the device is set accordingly. If the Artist decides to feed in a strong signal at 72kHz, this frequency will exceed the 1st-stage Nyquist by another 24kHz, and that means that its aliased frequency, 24kHz, will start to encroach on the frequencies that the high-quality low-pass filter is designed to pass.

Therefore, do not feed it strong input at 66.15kHz or any higher, when sampling at 44.1, or do not provide at 72kHz, when sampling at 48.



Print Friendly, PDF & Email

Leave a Reply

Your email address will not be published. Required fields are marked *

Please Prove You Are Not A Robot *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>