Hypothesis Disproved

A linear polarizer which I had ordered on-line recently arrived, and I did a promised experiment today, to test a hypothesis.


In This earlier posting and This earlier posting, I had proposed what amounts to two hypotheses combined:

  1. That photons may be circularly-polarized as one of their fundamental states, specifically left-handedly or right-handedly, so that other states of light can emerge from those states, eventually also due to a superposition of these two, intrinsic states.
  2. That quantum superposition can generally be collapsed, after which it will not resume as such, but after which witnessing of the resulting state may still take place.

The second hypothesis was meant as a synonym, for stating that:

  • Quantum-Mechanics is to take a form, in which certain states of particles are primary, while others are secondary, so that the secondary states can only form from the superposition of the primary states, while the reverse does not follow. This paraphrasing of the second hypothesis was further meant as a motivation to test, whether the particle-nature of matter and energy are in fact primary – hence, the circularly-polarized photons – and not the wave-nature.

Equipment used in the experiment:

A circular polarizer: A complex component, which has the logical operations of filtering light first, so that only light whose wave-function is plane-polarized along one axis is transmitted, and then secondly, to circularly-polarize the resulting light, so that its wave-functions along any two axes will be phase-shifted 90⁰ with respect to time. This was meant as a source for a primary state of light, polarized in an unknown direction out of two possible directions, since the retail store that sold me this circular polarizer, also did not label, whether it would produce left-handed or right-handed light. It’s to serve as a sufficiently-reliable source of circularly-polarized light.

A linear polarizer: A technically simpler component, which simply transmits light whose wave-function is plane-polarized along one axis, while absorbing light, whose wave-function is perpendicular to the plane transmitted. This was meant as an alternative, secondary state of light, formed as the superposition of left-handed and right-handed, circularly-polarized light.

A light-source: To consist of a mundane room-lighting fixture, which is assumed to generate randomly-polarized light.


  1. The matter will be regarded as trivial, that when stating ‘the wave function’, I am referring to ‘the electrostatic wave-function’, which is assumed to be perpendicular to the magnetic wave-function, while also being in-phase with it at all times.
  2. The question will be ignored, whether the circular polarizer itself physically consists of two distinct layers, that perform its logical operations one-by-one, or whether it is of some other design, that accomplishes the same logical operations in some other way.



Light from the light-source will first be passed through the linear polarizer, and then through the circular polarizer, to confirm that two axes of plane-polarized light, when perpendicular, will lead to near-zero overall transmission, while when they are parallel, will lead to maximum transmission, which will also be used as the notional reference, corresponding to ‘50% transmission’.


Light from the light-source will first be passed through the circular polarizer, the output of which is somehow to correspond to photons polarized in one circular direction, after which it will be passed to the linear polarizer.

Expected Result:

Because according to the hypotheses, the circularly-polarized light corresponds to an intrinsic state, which will no longer become superposed with the opposite state, the second component, the linear polarizer in the test-case, should not be able to output linearly- or plane-polarized light, because to do so should require the availability of both left- and right-handed photons. But, the linear polarizer will only receive a full amplitude of one or the other.

Real results:


The control case performed as expected.


In the test-case, regardless of what orientation was chosen between the two polarizers, light emerged from the last, with constant brightness corresponding to ‘50% transmission’.


While the principal is to be upheld, that circularly-polarized light may be one system for stating polarization, out of which plane-polarized light can emerge, eventually through quantum superposition, the reverse also seems to be possible.

However, this does not seem to favor an intrinsic state, as belonging to classical concepts of a particle, because the wave-function can be manipulated, regardless of the eventual existence of particles. And so this result further seems to suggest that wave-particle duality is plausible.

(Further Observations as of 02/21/2018 : )

Continue reading Hypothesis Disproved

Print Friendly, PDF & Email


I’ve read, that essentially there exist two types of reflections in Physics:

  1. Metallic
  2. Non-Metallic

Metallic reflections tend to preserve the polarization of the light, while non-metallic reflections tend to polarize the light. The latter are also the basis for “polarizing mirrors”.

Beam-splitters are essentially polarizing mirrors:

  • When randomly-polarized light hits them, the deflected beam will be plane-polarized in one direction, while the transmitted beam will contain, what the deflected beam does not contain.
  • When circularly-polarized light hits them, nothing really prevents them from splitting the beam.
  • When plane-polarized light hits them, depending on the angle of polarization, the amplitude of one emerging beam can become much lower, than that of the other. This is probably also why, linear polarizers can interfere with the physical auto-focus of a DSLR-camera.

From what I read, reflection, according to the particle depiction, takes place, because photons couple with plasmons, to form surface-polaritons.

From what I read, refraction takes place, according to the particle depiction, because photons couple with excitons, to form photon-excition polaritons.

(Updated 02/21/2018 : )

Continue reading Mirrors

Print Friendly, PDF & Email

Quantum Superposition, Quantum Entanglement

There is some ambiguity, with how I see other sources defining “quantum superposition”. From what I can extract, If there is a quantity of particles, whose combined wave-function is of a mixed nature between two other wave-functions, and if single particles are thought to emerge from that quantity, it can happen that the state of each particle is unknown, with a probability function between the two, mixed states. In that case, the particle can be superposed, as if having properties belonging to both states.

I think that some public writing fails to distinguish between the quantum superposition, and a possible, simple mixing of the properties of particles, whose states may be distinct.

In any case, if a particle is superposed, then one category of phenomena which may follow, is that its state may be “witnessed”, at which point it is no longer superposed. But while its state is superposed, without collapsing this superposition, its superposed states can have an effect on whether it can be witnessed or not. Specifically, if the wave-functions of the two states cancel out, then the presence of the particle cannot be detected, and therefore, its state can also not be witnessed.

I think that some experiments with entangled particles have as their basis, to use such cancellation, to reduce the rate at which some particles are witnessed in one beam, in an attempt to communicate this event to a second beam, whose particles should be entangled with the particles of the first beam.

The only part of this that really interests me for the moment, is the fact that light could be plane-polarized, and that at the same time, its photons could be in some superposed state. If a Polarizing Mirror next tries to extract light from that beam, which is polarized perpendicularly to the original direction, then the wave-function of this sought direction would be zero – even if this is due to cancellation. And then, not only would the amplitude of the derived beam be zero, but the state of the particles in the original beam, would also not be witnessed.

This would be, because a polarizing mirror actually ‘does something’, when a photon has the selected combination of properties. In contrast, if the linear polarizer is a Gel-Block, it ‘does something’, when photons have the opposite of the selected combination of properties – it absorbs them. Thus, for a gel-block not to witness the particles, it needs to be oriented parallel to the direction of polarization of the original beam.



Print Friendly, PDF & Email

Upgrade, Downtime

Today, the computers I name ‘Phoenix’ and ‘Klystron’ received major updates to their core ‘libgcc’ and ‘libstdc++’ libraries, as part of a combination of 25 actually-updated packages. Even though this did not upgrade the (Linux) Debian version of either O/S, which is still ‘8.10’ , This type of an upgrade requires a reboot. So I rebooted.

But, The PC which I name ‘Phoenix’ is also my Web-server. Therefore, there is no way for my blog or site to be visible to the Internet, during a reboot. My blog was offline from 20h15 until 20h25.

I apologize for any inconvenience this might have been to my readers.



Print Friendly, PDF & Email