
The purpose of this worksheet is, to provide the definition of a very basic, 2x2 rotation
matrix, based on a presumably known angle theta. According to Linear Algebra, it’s possible
to define two 2-element vectors, like so:

X =

(
x
y

)
, X ′ =

(
x′

y′

)
Thereby, again according to Linear Algebra, if a column-vector is multiplied by a matrix,

to result in another column-vector, this can be written like so:

X ′ =

(
a b
c d

)
X

But then, if [a .. d] are known constants, the way to compue X’ follows like so:

x′ = a x+ b y
y′ = c x+ d y

But, according to Trigonometry, if a point is defined as having coordinates (X), from
which the coordinates (X’) are to result, when rotated through angle theta, then this would
be the way to compute the resulting coordinates individually:

x′ = cos θ x− sin θ y
y′ = sin θ x+ cos θ y

But then, causal inspection of these equations reveals, that both x’ and y’ are individually
linear combinations of x and y. And so, the actual matrix equation which follows is:

X ′ =

(
cos θ − sin θ
sin θ cos θ

)
X

Therefore, if the angle of rotation is known, then by filling the matrix with elements,
which are the correctly-chosen and correctly-signed trig functions of that rotation angle, a
matrix can be computed which will rotate any 2-dimensional coordinate vector. Further,
this concept can be extended to 3-dimensional coordinate vectors, as long as the method
used to define the rotation yields corresponding elements of a 3x3 matrix. And again the
result will follow, because each out of 3 resulting coordinates, will individually be a linear
combination of the 3 original coordinates.

The application to 3D (solid) angles becomes more tricky, because more than one system
exists to state the angle, as composed of 3 values. One such system is the “Euler Angle”, and
another is a sequence of virtual rotations, once around (x), again around (y), and finally
around (z). Either way, the order of the coordinates becomes important. But the second of
these two systems becomes plausible sooner, because 3 matrices can be written, each stating
a different 2D rotation, and the matrix product is then easy to conceive.

A side-effect with 3D rotation matrices is, that at least some of the elements must form
as products and sums, of the trig functions, of more than one angle-component.

1



If the goal of the exercise is to translate a Euler Angle into a 3x3 rotation matrix, then
the task could be given as follows:

• The Euler Angle could regard the Y-axis as ’vertical’, and could regard the X-axis as
the original axis which, after being ’Panned’ around the Y-axis, is to be ’Tilted’ Up
or Down, after which the coordinates are to be ’Rolled’.

• This can be re-represented as 3 separate rotations around the Fixed-Axis-Sequence
’XZY’. In other words, the order of the axes of Pan, Tilt and Roll can simply be
reversed.

• Each rotation around a fixed axis can be translated into a 3x3 matrix, that leaves 1
axis unchanged, after which the matrix product can be computed.

• Such arithmetic simplifications are also a reason, for which certain 3D graphics soft-
ware simply offers the user a single type of solid angle, but with the axes in different
orders.

• In order to keep the usage comprehensible, software which does this will also abide by
a convention which defines the direction of each rotation, such as ’Counter-Clockwise,
Facing the Origin’.

The matrices which result would be as follows, assuming a Right-Handed Coordinate
System:

RX:

1 0 0
0 cos θX − sin θX
0 sin θX cos θX



RY:

 cos θY 0 sin θY
0 1 0

− sin θY 0 cos θY



RZ:

cos θZ − sin θZ 0
sin θZ cos θZ 0

0 0 1


(Assuming ’XZY’...)

M = RY RZ RX

2



There exists a family of rotation-angle definitions, which cannot be converted into matrix
representation as easily as the above, and those would be rotation angles, which have as
their preferred axes, arbitrary direction vectors. At the same time, Quaternions would be
more-difficult to convert into matrices, based on straightforward analysis such as what is
written above. As an example of the first family of rotation-angles, a convention also exists
which states a vector as the single, arbitrary axis of rotation, and which either uses the
magnitude of the vector, or a separately-supplied real number, to state by what angle the
rotation is to take place, as if looking back at the origin from the stated direction.

The reader may find the formulae to convert those types of rotation-definitions into 3x3
matrices, on his or her own time.

One place in which this issue must crucially be solved however, is in the ’Rigging’ of 3D
models for CGI, where each model possesses numerous joints, and where the movement of
any joint might best be made familiar to the content-designer, as a Euler Angle, that has
arbitrary preferred axes, which at first glance, might just be arbitrary direction vectors in
the model’s own coordinates.

But, in the case where 3D models are rigged, and are given an internal skeleton, there is
a saving priniciple which generally applies. The internal skeleton of the 3D model is hierar-
chical in nature. This means that each (simulated) bone connects to a parent bone, so that
according to “Forward Kinematics”, rotating the parent bone, also rotates all the attatched
child-bones. Forward Kinematics needs to be understood, before ’Inverse Kinematics’ can
be understood.

But in that context, it can be required by the 3D rendering system, that the ’root’ bone
- the parent of all the model’s bones - must always have a fixed orientation with respect
to the model’s coordinates. The intial rotation of bones, may start out as relative to the
model’s coordinates. And this can also result in the child bones receiving rotated axes for
their Euler Angles. But this idea of Forward Kinematics also requires that Math be applied
in correct sequence, to convert the rotation matrices that are local to any one child bone,
into rotation matrices which state that child bone’s rotation in a way global to the model. It
follows that the global matrix for any child bone, forms as the matrix product of the entire
chain of parent bones, all the way back to the root bone.

3



In order for that approach really to work however, the concept must also be introduced,
that each bone have ’a chained, neutral angle’, in which they don’t displace their vertices,
but for which the inverse matrices have been computed.1 Each bone’s chained, animated
angle would need to be multiplied by its inverse, neutral matrix, to arrive at the current
bone’s global matrix.

Such approaches are again, not meant to complicate the design of CGI software, which
must at least feed global rotation matrices to the GPU, or which must feed animated vertex-
positions to the GPU. Rather, such approaches actually simplify the implementation of
certain 3D rendering engines, because they reduce the methodologies to one predictable
methodlogy, that will work, regardless of how deeply convoluted the content becomes, which
the content designer creates. If the 3D rendering engine is to supply alternatives, each time,
the alternatives also need to be fleshed out, until a content designer can apply them to
whatever level of complexity he or she wishes. Only then, has a 3D rendering engine been
coded correctly.

If the application is CGI-related, then there is an added level of complexity (which might
act as a deterrent against the coders’ adding their own complexity). Here, transformation
is defined as a rotation, followed by a translation. The use of stretching and scaling, by the
rotation matrix, has often been abandoned in the design of 3D rendering engines, because
to integrate scaling with the rotation matrix, already makes the project too cumbersome to
implement.

The displacement vector often needs to be computed in an inverted way.

If the rotation matrices are to be applied to the skinning of a 3D model, then the basic
assumption is that the rotation by itself will affect the position of eventual vertices, relative
to the origin of the model (which was also how they were stored). But in the case of bones,
what’s really desired is that the position of the hinge-point, at which each bone connects
to the parent bone, not move, due to the rotation of the current bone, that the hinge-point
anchors.

The systematic way to achieve that would be, first to compute by how much the rotation
of any one bone, also displaces its hinge-point, the position of which needs to be stored in a
memory location used by the CPU. And this internal representation of the position of the
hinge-point, is in model coordinates. The negative of this displacement vector needs to be
stored as the displacement of the single bone, that accompanies its rotation.

1In such cases, instead of actually computing a matrix-inverse, one inverts the angle.

4



Similarly, the goal could be for the CPU to keep recomputing the View Matrix, which
transforms World Coordinates, into Camera Coordinates, aka View Coordinates. This ma-
trix needs to rotate world coordinates in the inverted angles, from the angles in which the
camera is panned, tilted and rolled, and the inverse of the camera’s origin vector must then
be put through the resulting rotation, to result in the displacement. This is because the
world center is effectively being oriented.2

But along with the View Matrix, any real 3D rendering engine also needs to compute
the Inverse View Matrix, for various purposes that go beyond the scope of this document
to explain. This Inverse View Matrix converts from View Coordinates, back into World
Coordinates. The most practical way to compute this matrix is not, to compute the View
Matrix first, and then to invert that.

Instead, the most efficient way to compute the Inverse View Matrix is, to use the camera’s
pan, tilt and view angles (Euler Angles) directly for the associated rotation matrix. Then,
the camera’s position vector can be used directly as the displacement, because it’s being
added to whatever view coordinates are given, to arrive at world coordinates.

Dirk Mittler

2Such inversion of Euler Angles also requires the reversal of the order in which axes are applied.

5


