
A Hypothetical way to Extrapolate All-Complex
Roots of a Polynomial

Dirk Mittler

January 22, 2019

1

0.0.1 Context:
The methodology exists, by which at least 1 root of a polynomial of degree (N)
greater than 2 can be found by successive approximation, until it is accurate
to within a specified margin of error, so that next, Factor Theorem can be
applied to derive a polynomial of degree (N-1), for which the methodology can
be repeated.

0.0.2 Problem 1:
The range of values of (x) to be tried is not known to begin with, so that naive
methods of successive approximation might need to be given hints, as to what
range to scan for real-numbered roots.

0.0.3 Problem 2:
Both the parameter (x) and the polynomial function (y), with real coefficients
(a0, a1, a2, · · · aN), could be complex numbers, so that at first glance, successive
approximation would need to be 2-dimensional. Additionally, every time the
degree of the polynomial is even, the possibility exists that not even one of its
roots are real, but the complex roots must be found anyway.

2

0.0.4 Proposed solution:
Instead of just performing a successive approximation, this problem could be
conceived at first, to be based on a methodology of linear extrapolation, by which
the two end-points (ya) and (yb) could be plotted according to the parameter
(t), so that the extrapolated estimate (xt) follows as a ’blended’ result between
(xa) and (xb). More precisely, the computations to perform could be:

ε = 10−12

xa0 = −1, xb0 = eπi/(N+1)

ya0 ← xa0, yb0 ← xb0
spread0 = |(yb0)− (ya0)|[
N ≤ 4, (spread0)

N < ε
]
→ Return Error[

N > 4, (spread0)
(N−2) < N2ε

]
→ Return Error

misses0 = 0

Begin Loop:
ε′ = max

(
N |xan|(N−1) , 1

N

)
ε

|yan| ≤ ε′ → Return (xan)
|ybn − yan| ≤ ε′ → Return (xan)

tn = −yan
ybn−yan

xtn = tn xbn + (1− tn)xan
xa(n+1) = xtn, xb(n+1) = xtn + i xan−xtn2
ya(n+1) ← xa(n+1)

yb(n+1) ← yb(n+1)∣∣ya(n+1)

∣∣ ≥ spreadn → misses(n+1) = missesn + 1∣∣ya(n+1)

∣∣ < spreadn → misses(n+1) = missesn
misses(n+1) > N → Return Error

spread(n+1) =
∣∣ya(n+1)

∣∣
End Loop

3

• It’s assumed that the polynomial has been normalized, so that the coeffi-
cient (aN) of the highest-degree term equals (+1).

• Based entirely on instinct, I would suggest that this system could just
be extended, so that all the variables are allowed to be complex num-
bers, including (tn), in which case (xb0) may also be initialized with some
imaginary component.

• As soon as |xbn − xan| becomes much smaller than the distance between
roots, this algorithm should also be faster than a binary search, because
over very small intervals, a curve starts to approximate a straight line.

• Caveat: This algorithm will solve a linear equation (N = 1) within one
iteration. But this also means that if given an equation of degree (N > 1),
it will compute the first approximation of the root, as if the equation was
of the first degree, meaning that (xt0) will be a real number only. This
means that (xa1), (xb1), (ya1) and (yb1) would also be real numbers only.
For that reason, in order to be able to find any complex roots, the twister
needs to be included, which I wrote above as (+i xan−xtn2).

• If the polynomial is non-linear, (N > 1), then it will follow that the
complex value (tn) will not be congruent with (xbn−xan), as (tn) follows
from (ybn−yan), which is equally not congruent. Therefore, the condition
cited in the caveat above, might only occur when (N = 1). Yet, without
the twister, successive iterations may still ’flatten’ the series (xan), such
that the ability to generate complex values may diminish.

4

There is a note about finding complex roots which needs to be observed,
as providing a context for the algorithm above to be called in. For the sake
of argument, the polynomial could be of the 3rd degree, so that being of an
odd degree, it will have at least one real root, plus two additional roots, which
may or may not be complex. The occurrence of double roots will be ignored
for the moment. On the supposition that two of the roots are indeed complex,
the algorithm could find one complex root first by chance. The problem which
might take place at first glance, is that this complex root could get factorized
out of the initial polynomial, so that a quadratic would result, with one real
root and one complex root.

The only way in which such a quadratic is possible, is if the coefficients
of polynomials are allowed to be complex in turn, and attempting to divide a
real-coefficient polynomial by one complex factor, will in fact result in such a
polynomial of degree (N-1), that has complex coefficients.

One of the standards which I’m holding this exercise to, is that all coefficients
of all polynomials, will be real coefficients.

Therefore, the following idea must be applied, as soon as the algorithm above
finds a complex root:

• The conjugate of that root must also be a root,

• These two conjugate roots can be used by conventional means, to derive
a quadratic with only real coefficients.

• The polynomial of degree (N) must be divided by that quadratic, in order
to arrive at a polynomial of degree (N-2), with only real coefficients.

(b follows from the real component, of the complex root:)
a = 1
xr = −b

2a
2a (xr) = −b
b = −2a (xr)

xi2 = −(b2−4ac)
4a2

xi2 = 4ac−b2
4a2

4a2 (xi)2 = 4ac− b2
4ac = 4a2 (xi)2 + b2

c = a (xi)2 + b2

4a

Dirk Mittler

